1
|
Mayorga LS, Mascotti ML, Bruininks BMH, Masone D. Confinement Induces Morphological and Topological Transitions in Multivesicles. ACS NANO 2025; 19:4515-4527. [PMID: 39838717 DOI: 10.1021/acsnano.4c14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The study of self-assembly in confined spaces has gained significant attention among amphiphilic superstructures and colloidal design. The additional complexity introduced by interactions between contents and their containers, along with the effects of shape and lipid mixing, makes multivesicular bodies an interesting subject of study. Despite its promising applications in biomedicine, such as drug delivery and biomimetic materials, much remains unexplored. Here we investigate the effects of confinement on vesicles with varying lipid tail lengths. We first analyze the morphological changes of single spherical vesicles undergoing dehydration, which leads to a prolate-to-oblate transition. Our findings reveal that reductions in water content induce changes of shape while minimally affecting the surface area needed to maintain the hydration layer of lipid phosphate groups. Additionally, using extensive coarse-grained molecular dynamics simulations, we explore how vesicles confined within other vesicles evolve through topological changes into unexpected structures, mainly influenced by the lipid hydrocarbon lengths. Our results highlight the interplay between confinement, curvature-induced lipid sorting, and lipid-mixing entropy, leading to exquisitely self-assembled superstructures.
Collapse
Affiliation(s)
- Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Maria L Mascotti
- Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 Groningen, The Netherlands
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
2
|
Harris DH, Torres-Díaz I. Directed assembly of small binary clusters of magnetizable ellipsoids. SOFT MATTER 2024; 20:6411-6423. [PMID: 39083371 DOI: 10.1039/d4sm00300d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We report the effect of shape anisotropy and material properties on the directed assembly of binary suspensions composed of magnetizable ellipsoids. In a Monte Carlo simulation, we implement the ellipsoid-dipole model to calculate the pairwise dipolar interaction energy as a function of position and orientation. The analysis explores dilute suspensions of paramagnetic and diamagnetic ellipsoids with different aspect ratios in a superparamagnetic medium. We analyze the local order of binary structures as a function of particle aspect ratio, medium permeability, and dipolar interaction strength. Our results show that local order and symmetry are tunable under the influence of a uniform magnetic field when one component of the structure is dilute with respect to the other. The simulation results match previously reported experiments on the directed assembly of binary suspension of spheres. Additionally, we report the conditions on particle aspect ratios and medium properties for various structures with rotational symmetries, as well as open and enclosed structures under the influence of a uniform magnetic field.
Collapse
Affiliation(s)
- David H Harris
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Isaac Torres-Díaz
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
3
|
Martínez-Fernández D, Pedrosa C, Herranz M, Foteinopoulou K, Karayiannis NC, Laso M. Random close packing of semi-flexible polymers in two dimensions: Emergence of local and global order. J Chem Phys 2024; 161:034902. [PMID: 39017431 DOI: 10.1063/5.0216436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Through extensive Monte Carlo simulations, we systematically study the effect of chain stiffness on the packing ability of linear polymers composed of hard spheres in extremely confined monolayers, corresponding effectively to 2D films. First, we explore the limit of random close packing as a function of the equilibrium bending angle and then quantify the local and global order by the degree of crystallinity and the nematic or tetratic orientational order parameter, respectively. A multi-scale wealth of structural behavior is observed, which is inherently absent in the case of athermal individual monomers and is surprisingly richer than its 3D counterpart under bulk conditions. As a general trend, an isotropic to nematic transition is observed at sufficiently high surface coverages, which is followed by the establishment of the tetratic state, which in turn marks the onset of the random close packing. For chains with right-angle bonds, the incompatibility of the imposed bending angle with the neighbor geometry of the triangular crystal leads to a singular intra- and inter-polymer tiling pattern made of squares and triangles with optimal local filling at high surface concentrations. The present study could serve as a first step toward the design of hard colloidal polymers with a tunable structural behavior for 2D applications.
Collapse
Affiliation(s)
- Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), C/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Clara Pedrosa
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), C/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), C/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), C/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), C/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), C/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
4
|
Qian Y, Li S. Optimal three-dimensional particle shapes for maximally dense saturated packing. J Chem Phys 2024; 161:014505. [PMID: 38949589 DOI: 10.1063/5.0217809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Saturated packing is a random packing state of particles widely applied in investigating the physicochemical properties of granular materials. Optimizing particle shape to maximize packing density is a crucial challenge in saturated packing research. The known optimal three-dimensional shape is an ellipsoid with a saturated packing density of 0.437 72(51). In this work, we generate saturated packings of three-dimensional asymmetric shapes, including spherocylinders, cones, and tetrahedra, via the random sequential adsorption algorithm and investigate their packing properties. Results show that the optimal shape of asymmetric spherocylinders gives the maximum density of 0.4338(9), while cones achieve a higher value of 0.4398(10). Interestingly, tetrahedra exhibit two distinct optimal shapes with significantly high densities of 0.4789(19) and 0.4769(18), which surpass all previous results in saturated packing. The study of adsorption kinetics reveals that the two optimal shapes of tetrahedra demonstrate notably higher degrees of freedom and faster growth rates of the particle number. The analysis of packing structures via the density pair-correlation function shows that the two optimal shapes of tetrahedra possess faster transitions from local to global packing densities.
Collapse
Affiliation(s)
- Yutong Qian
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- State Key Laboratory for Turbulence and Complex System, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Baule A, Kurban E, Liu K, Makse HA. Machine learning approaches for the optimization of packing densities in granular matter. SOFT MATTER 2023; 19:6875-6884. [PMID: 37501593 DOI: 10.1039/d2sm01430k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The fundamental question of how densely granular matter can pack and how this density depends on the shape of the constituent particles has been a longstanding scientific problem. Previous work has mainly focused on empirical approaches based on simulations or mean-field theory to investigate the effect of shape variation on the resulting packing densities, focusing on a small set of pre-defined shapes like dimers, ellipsoids, and spherocylinders. Here we discuss how machine learning methods can support the search for optimally dense packing shapes in a high-dimensional shape space. We apply dimensional reduction and regression techniques based on random forests and neural networks to find novel dense packing shapes by numerical optimization. Moreover, an investigation of the regression function in the dimensionally reduced shape representation allows us to identify directions in the packing density landscape that lead to a strongly non-monotonic variation of the packing density. The predictions obtained by machine learning are compared with packing simulations. Our approach can be more widely applied to optimize the properties of granular matter by varying the shape of its constituent particles.
Collapse
Affiliation(s)
- Adrian Baule
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Esma Kurban
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Kuang Liu
- Levich Institute and Physics Department, The City College of New York, NY 10031, USA
| | - Hernán A Makse
- Levich Institute and Physics Department, The City College of New York, NY 10031, USA
| |
Collapse
|
6
|
González HI, Cinacchi G. Dense Disordered Jammed Packings of Hard Spherocylinders with a Low Aspect Ratio: A Characterization of Their Structure. J Phys Chem B 2023; 127:6814-6824. [PMID: 37478840 PMCID: PMC10405222 DOI: 10.1021/acs.jpcb.3c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Indexed: 07/23/2023]
Abstract
This work numerically investigates dense disordered (maximally random) jammed packings of hard spherocylinders of cylinder length L and diameter D by focusing on L/D ∈ [0,2]. It is within this interval that one expects that the packing fraction of these dense disordered jammed packings ϕMRJ hsc attains a maximum. This work confirms the form of the graph ϕMRJ hsc versus L/D: here, comparably to certain previous investigations, it is found that the maximal ϕMRJ hsc = 0.721 ± 0.001 occurs at L/D = 0.45 ± 0.05. Furthermore, this work meticulously characterizes the structure of these dense disordered jammed packings via the special pair-correlation function of the interparticle distance scaled by the contact distance and the ensuing analysis of the statistics of the hard spherocylinders in contact: here, distinctly from all previous investigations, it is found that the dense disordered jammed packings of hard spherocylinders with 0.45 ≲ L/D ≤ 2 are isostatic.
Collapse
Affiliation(s)
- Hugo Imaz González
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria
de Cantoblanco, E-28049 Madrid, España
| | - Giorgio Cinacchi
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria
de Cantoblanco, E-28049 Madrid, España
- Instituto
de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, España
- Instituto
de Ciencias de Materiales “Nicolás Cabrera”, Universidad Autónoma de Madrid, Ciudad Universitaria
de Cantoblanco, E-28049 Madrid, España
| |
Collapse
|
7
|
Huang Z, Deng W, Zhang S, Li S. Optimal shapes of disk assembly in saturated random packings. SOFT MATTER 2023; 19:3325-3336. [PMID: 37096323 DOI: 10.1039/d3sm00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Particle morphology is one of the most significant factors influencing the packing structures of granular materials. With certain targeted properties or optimization criteria, inverse packing problems have drawn extensive attention in terms of their adaptability to many material design tasks. An important question hard to answer is which particle shape, especially within given shape families, forms the densest (loosest) random packing? In this paper, we address this issue for the disk assembly model in two dimensions with an infinite variety of shapes, which are simulated in the random sequential adsorption process to suppress crystallization. Via a unique shape representation method, particle shapes are transformed into genotype sequences in the continuous shape space where we utilize the genetic algorithm as an efficient shape optimizer. Specifically, we consider three representative species of disk assembly, i.e., congruent tangent disks, incongruent tangent disks, and congruent overlapping disks, and carry out shape optimization on their packing densities in the saturated random state. We numerically search optimal shapes in the three species with a variable number of constituent disks which yield the maximal and minimal packing densities. We obtain an isosceles circulo-triangle and an unclosed ring for the maximal and minimal packing density in saturated random packings, respectively. The perfect sno-cone and isosceles circulo-triangle are also specifically investigated which give remarkably high packing densities of around 0.6, much denser than those of ellipses. This study is beneficial for guiding the design of particle shapes as well as the inverse design of granular materials.
Collapse
Affiliation(s)
- Zhaohui Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Wei Deng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shixuan Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Maher CE, Stillinger FH, Torquato S. Kinetic Frustration Effects on Dense Two-Dimensional Packings of Convex Particles and Their Structural Characteristics. J Phys Chem B 2021; 125:2450-2464. [PMID: 33650864 DOI: 10.1021/acs.jpcb.1c00497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of hard-particle packings is of fundamental importance in physics, chemistry, cell biology, and discrete geometry. Much of the previous work on hard-particle packings concerns their densest possible arrangements. By contrast, we examine kinetic effects inevitably present in both numerical and experimental packing protocols. Specifically, we determine how changing the compression/shear rate of a two-dimensional packing of noncircular particles causes it to deviate from its densest possible configuration, which is always periodic. The adaptive shrinking cell (ASC) optimization scheme maximizes the packing fraction of a hard-particle packing by first applying random translations and rotations to the particles and then isotropically compressing and shearing the simulation box repeatedly until a possibly jammed state is reached. We use a stochastic implementation of the ASC optimization scheme to mimic different effective time scales by varying the number of particle moves between compressions/shears. We generate dense, effectively jammed, monodisperse, two-dimensional packings of obtuse scalene triangle, rhombus, curved triangle, lens, and "ice cream cone" (a semicircle grafted onto an isosceles triangle) shaped particles, with a wide range of packing fractions and degrees of order. To quantify these kinetic effects, we introduce the kinetic frustration index K, which measures the deviation of a packing from its maximum possible packing fraction. To investigate how kinetics affect short- and long-range ordering in these packings, we compute their spectral densities χ̃V(k) and characterize their contact networks. We find that kinetic effects are most significant when the particles have greater asphericity, less curvature, and less rotational symmetry. This work may be relevant to the design of laboratory packing protocols.
Collapse
Affiliation(s)
- Charles Emmett Maher
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Physics, Princeton University, Princeton, New Jersey 08544, United States.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States.,Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Griffith AD, Hoy RS. Densest versus jammed packings of bent-core trimers. Phys Rev E 2019; 100:022903. [PMID: 31574635 DOI: 10.1103/physreve.100.022903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 06/10/2023]
Abstract
We identify putatively maximally dense packings of tangent-sphere trimers with fixed bond angles (θ=θ_{0}), and contrast them to the disordered jammed states they form under quasistatic and dynamic athermal compression. Incommensurability of θ_{0} with three-dimensional (3D) close packing does not by itself inhibit formation of dense 3D crystals; all θ_{0} allow formation of crystals with ϕ_{max}(θ_{0})>0.97ϕ_{cp}. Trimers are always able to arrange into periodic structures composed of close-packed bilayers or trilayers of triangular-lattice planes, separated by "gap layers" that accommodate the incommensurability. All systems have ϕ_{J} significantly below the monomeric value, indicating that trimers' quenched bond-length and bond-angle constraints always act to promote jamming. ϕ_{J} varies strongly with θ_{0}; straight (θ_{0}=0) trimers minimize ϕ_{J} while closed (θ_{0}=120^{∘}) trimers maximize it. Marginally jammed states of trimers with lower ϕ_{J}(θ_{0}) exhibit quantifiably greater disorder, and the lower ϕ_{J} for small θ_{0} is apparently caused by trimers' decreasing effective configurational freedom as they approach linearity.
Collapse
Affiliation(s)
- Austin D Griffith
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
10
|
D'Urso C, Celebre G, Cinacchi G. Phase behavior of hard C_{2h}-symmetric particle systems. Phys Rev E 2019; 100:012709. [PMID: 31499787 DOI: 10.1103/physreve.100.012709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 06/10/2023]
Abstract
Using Monte Carlo numerical simulation, this work sketches the phase diagram of systems of certain hard C_{2h}-symmetric particles, formed by gluing two aligned and displaced hard spherocylinders with a cylindrical-length-to-diameter ratio realistically, if viewed not only from the lyotropic colloidal liquid-crystal side but also from the thermotropic low-molecular-mass liquid-crystal side, equal to 5, as a function of the displacement. Several distinctive phases are observed, such as a nonperiodic smectic-B-like phase, a nonperiodic smectic-H-like phase, a smectic-C phase, and a short-layer-spacing uniaxial smectic-A phase but no biaxial nematic phase.
Collapse
Affiliation(s)
- Christian D'Urso
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci, I-87036 Arcavacata di Rende (CS), Italy
| | - Giorgio Celebre
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci, I-87036 Arcavacata di Rende (CS), Italy
| | - Giorgio Cinacchi
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales "Nicolás Cabrera," Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
11
|
Torquato S. Perspective: Basic understanding of condensed phases of matter via packing models. J Chem Phys 2018; 149:020901. [DOI: 10.1063/1.5036657] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- S. Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
12
|
Packing, entropic patchiness, and self-assembly of non-convex colloidal particles: A simulation perspective. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
McBride JM, Avendaño C. Phase behaviour and gravity-directed self assembly of hard convex spherical caps. SOFT MATTER 2017; 13:2085-2098. [PMID: 28225134 DOI: 10.1039/c6sm02678h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the phase behaviour and self-assembly of convex spherical caps using Monte Carlo simulations. This model is used to represent the main features observed in experimental colloidal particles with mushroom-cap shape [Riley et al., Langmuir, 2010, 26, 1648]. The geometry of this non-centrosymmetric convex model is fully characterized by the aspect ratio χ* defined as the spherical cap height to diameter ratio. We use NPT Monte Carlo simulations combined with free energy calculations to determine the most stable crystal structures and the phase behaviour of convex spherical caps with different aspect ratios. We find a variety of crystal structures at each aspect ratio, including plastic and dimer-based crystals; small differences in chemical potential between the structures with similar morphology suggest that convex spherical caps have the tendency to form polycrystalline phases rather than crystallising into a single uniform structure. With the exception of plastic crystals observed at large aspect ratios (χ* > 0.75), crystallisation kinetics seem to be too slow, hindering the spontaneous formation of ordered structures. As an alternative, we also present a study of directing the self-assembly of convex spherical caps via sedimentation onto solid substrates. This study contributes to show how small changes to particle shape can significantly alter the self-assembly of crystal structures, and how a simple gravity field and a template can substantially enhance the process.
Collapse
Affiliation(s)
- John M McBride
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, UK.
| | - Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, UK.
| |
Collapse
|
14
|
Romano S. Computer simulation study of a mesogenic lattice model based on long-range dispersion interactions. Phys Rev E 2016; 94:042702. [PMID: 27841513 DOI: 10.1103/physreve.94.042702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Indexed: 06/06/2023]
Abstract
In contrast to thermotropic biaxial nematic phases, for which some long sought for experimental realizations have been obtained, no experimental realizations are yet known for their tetrahedratic and cubatic counterparts, involving orientational orders of ranks 3 and 4, respectively, also studied theoretically over the last few decades. In previous studies, cubatic order has been found for hard-core or continuous models consisting of particles possessing cubic or nearly cubic tetragonal or orthorhombic symmetries; in a few cases, hard-core models involving uniaxial (D_{∞h}-symmetric) particles have been claimed to produce cubatic order as well. Here we address by Monte Carlo simulation a lattice model consisting of uniaxial particles coupled by long-range dispersion interactions of the London-De Boer-Heller type; the model was found to produce no second-rank nematic but only fourth-rank cubatic order, in contrast to the nematic behavior long known for its counterpart with interactions truncated at nearest-neighbor separation.
Collapse
Affiliation(s)
- Silvano Romano
- Physics Department, University of Pavia, via A. Bassi 6, 27100 Pavia, Italy
| |
Collapse
|
15
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1142] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
16
|
Hoell C, Löwen H. Colloidal suspensions of C-particles: Entanglement, percolation and microrheology. J Chem Phys 2016; 144:174901. [DOI: 10.1063/1.4947237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Roth LK, Jaeger HM. Optimizing packing fraction in granular media composed of overlapping spheres. SOFT MATTER 2016; 12:1107-1115. [PMID: 26592541 DOI: 10.1039/c5sm02335a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
What particle shape will generate the highest packing fraction when randomly poured into a container? In order to explore and navigate the enormous search space efficiently, we pair molecular dynamics simulations with artificial evolution. Arbitrary particle shape is represented by a set of overlapping spheres of varying diameter, enabling us to approximate smooth surfaces with a resolution proportional to the number of spheres included. We discover a family of planar triangular particles, whose packing fraction of ϕ ∼ 0.73 is among the highest experimental results for disordered packings of frictionless particles. We investigate how ϕ depends on the arrangement of spheres comprising an individual particle and on the smoothness of the surface. We validate the simulations with experiments using 3D-printed copies of the simplest member of the family, a planar particle consisting of three overlapping spheres with identical radius. Direct experimental comparison with 3D-printed aspherical ellipsoids demonstrates that the triangular particles pack exceedingly well not only in the limit of large system size but also when confined to small containers.
Collapse
Affiliation(s)
- Leah K Roth
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA.
| | - Heinrich M Jaeger
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Cinacchi G, Torquato S. Hard convex lens-shaped particles: Densest-known packings and phase behavior. J Chem Phys 2015; 143:224506. [DOI: 10.1063/1.4936938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Giorgio Cinacchi
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Institute for the Science and Technology of Materials, Program for Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
19
|
Tian J, Xu Y, Jiao Y, Torquato S. A Geometric-Structure Theory for Maximally Random Jammed Packings. Sci Rep 2015; 5:16722. [PMID: 26568437 PMCID: PMC4644945 DOI: 10.1038/srep16722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/19/2015] [Indexed: 01/10/2023] Open
Abstract
Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, our formula yields predictions of ϕMRJ that are in excellent agreement with corresponding computer-simulation estimates in almost the entire α-x plane with semi-axis ratio α and small-particle relative number concentration x. Importantly, in the monodisperse circle limit, the predicted ϕMRJ = 0.834 agrees very well with the very recently numerically discovered MRJ density of 0.827, which distinguishes it from high-density "random-close packing" polycrystalline states and hence provides a stringent test on the theory. Similarly, for non-circular monodisperse superdisks, we predict MRJ states with densities that are appreciably smaller than is conventionally thought to be achievable by standard packing protocols.
Collapse
Affiliation(s)
- Jianxiang Tian
- Department of Physics, Qufu Normal University, Qufu 273165, China.,Department of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yaopengxiao Xu
- Materials Science and Engineering, Arizona State University, Tempe Arizona 85287, USA
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe Arizona 85287, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton New Jersey 08544, USA.,Department of Physics, Princeton University, Princeton New Jersey 08544, USA.,Program in Applied and Computational Mathematics, Princeton University, Princeton New Jersey 08544, USA
| |
Collapse
|
20
|
Jennings C, Ramsay M, Hudson T, Harrowell P. Packing concave molecules in crystals and amorphous solids: on the connection between shape and local structure. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1046528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Malcolm Ramsay
- School of Chemistry, University of Sydney , Sydney, Australia
| | - Toby Hudson
- School of Chemistry, University of Sydney , Sydney, Australia
| | - Peter Harrowell
- School of Chemistry, University of Sydney , Sydney, Australia
| |
Collapse
|
21
|
Jaeger HM. Celebrating Soft Matter's 10th Anniversary: toward jamming by design. SOFT MATTER 2015; 11:12-27. [PMID: 25385170 DOI: 10.1039/c4sm01923g] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In materials science, high performance is typically associated with regularity and order, while disorder and the presence of defects are assumed to lead to sub-optimal outcomes. This holds for traditional solids such as crystals as well as for many types of nanoscale devices. However, there are circumstances where disorder can be harnessed to achieve performance not possible with approaches based on regularity. Recent research has shown opportunities specifically for soft matter. There, the phenomenon of jamming leads to unique emergent behavior that enables disordered, amorphous systems to switch reversibly between solid-like rigidity and fluid-like plasticity. This makes it possible to envision materials that can change stiffness or even shape adaptively. We review some of the progress in this direction, discussing examples where jamming has been explored from micro to macro scales in colloidal systems, suspensions, granular-materials-enabled soft robotics, and architecture. We focus in particular on how the jammed aggregate state can be tailored by controlling particle level properties and discuss very recent ideas that provide an important first step toward actual design of specifically targeted jamming behavior.
Collapse
Affiliation(s)
- Heinrich M Jaeger
- James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Boles MA, Talapin DV. Self-Assembly of Tetrahedral CdSe Nanocrystals: Effective “Patchiness” via Anisotropic Steric Interaction. J Am Chem Soc 2014; 136:5868-71. [DOI: 10.1021/ja501596z] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Michael A. Boles
- Department of Chemistry and
James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Dmitri V. Talapin
- Department of Chemistry and
James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Gabbrielli R, Jiao Y, Torquato S. Dense periodic packings of tori. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022133. [PMID: 25353448 DOI: 10.1103/physreve.89.022133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 06/04/2023]
Abstract
Dense packings of nonoverlapping bodies in three-dimensional Euclidean space R(3) are useful models of the structure of a variety of many-particle systems that arise in the physical and biological sciences. Here we investigate the packing behavior of congruent ring tori in R(3), which are multiply connected nonconvex bodies of genus 1, as well as horn and spindle tori. Specifically, we analytically construct a family of dense periodic packings of unlinked tori guided by the organizing principles originally devised for simply connected solid bodies [Torquato and Jiao, Phys. Rev. E 86, 011102 (2012)]. We find that the horn tori as well as certain spindle and ring tori can achieve a packing density not only higher than that of spheres (i.e., π/sqrt[18] = 0.7404...) but also higher than the densest known ellipsoid packings (i.e., 0.7707...). In addition, we study dense packings of clusters of pair-linked ring tori (i.e., Hopf links), which can possess much higher densities than corresponding packings consisting of unlinked tori.
Collapse
Affiliation(s)
- Ruggero Gabbrielli
- Interdisciplinary Laboratory for Computational Science, Department of Physics, University of Trento, 38123 Trento, Italy
| | - Yang Jiao
- Materials Science and Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85281, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Program in Applied and Computational Mathematics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
24
|
Xu W, Chen W, Chen H. Modeling of soft interfacial volume fraction in composite materials with complex convex particles. J Chem Phys 2014; 140:034704. [PMID: 25669404 DOI: 10.1063/1.4861664] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Wenxiang Xu
- Institute of Soft Matter Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Wen Chen
- Institute of Soft Matter Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Huisu Chen
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
25
|
Athanassiadis AG, Miskin MZ, Kaplan P, Rodenberg N, Lee SH, Merritt J, Brown E, Amend J, Lipson H, Jaeger HM. Particle shape effects on the stress response of granular packings. SOFT MATTER 2014; 10:48-59. [PMID: 24651965 DOI: 10.1039/c3sm52047a] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.
Collapse
Affiliation(s)
- Athanasios G Athanassiadis
- James Franck Institute & Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang G, Torquato S. Precise algorithm to generate random sequential addition of hard hyperspheres at saturation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:053312. [PMID: 24329384 DOI: 10.1103/physreve.88.053312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 06/03/2023]
Abstract
The study of the packing of hard hyperspheres in d-dimensional Euclidean space R^{d} has been a topic of great interest in statistical mechanics and condensed matter theory. While the densest known packings are ordered in sufficiently low dimensions, it has been suggested that in sufficiently large dimensions, the densest packings might be disordered. The random sequential addition (RSA) time-dependent packing process, in which congruent hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful packing model to study disorder in high dimensions. Of particular interest is the infinite-time saturation limit in which the available space for another sphere tends to zero. However, the associated saturation density has been determined in all previous investigations by extrapolating the density results for nearly saturated configurations to the saturation limit, which necessarily introduces numerical uncertainties. We have refined an algorithm devised by us [S. Torquato, O. U. Uche, and F. H. Stillinger, Phys. Rev. E 74, 061308 (2006)] to generate RSA packings of identical hyperspheres. The improved algorithm produce such packings that are guaranteed to contain no available space in a large simulation box using finite computational time with heretofore unattained precision and across the widest range of dimensions (2≤d≤8). We have also calculated the packing and covering densities, pair correlation function g(2)(r), and structure factor S(k) of the saturated RSA configurations. As the space dimension increases, we find that pair correlations markedly diminish, consistent with a recently proposed "decorrelation" principle, and the degree of "hyperuniformity" (suppression of infinite-wavelength density fluctuations) increases. We have also calculated the void exclusion probability in order to compute the so-called quantizer error of the RSA packings, which is related to the second moment of inertia of the average Voronoi cell. Our algorithm is easily generalizable to generate saturated RSA packings of nonspherical particles.
Collapse
Affiliation(s)
- G Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - S Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
27
|
Carmichael SP, Shell MS. A simple mechanism for emergent chirality in achiral hard particle assembly. J Chem Phys 2013; 139:164705. [DOI: 10.1063/1.4826466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Hopkins AB, Stillinger FH, Torquato S. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022205. [PMID: 24032826 DOI: 10.1103/physreve.88.022205] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤φ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and explicit construction of binary packings with such high packing fractions could have important practical implications for granular composites where density is critical both to material properties and fabrication cost, including for solid propellants, concrete, and ceramics. The densities and structures of jammed binary packings at various α and x are also relevant to the formation of a glass phase in multicomponent metallic systems.
Collapse
Affiliation(s)
- Adam B Hopkins
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
29
|
Qi W, de Graaf J, Qiao F, Marras S, Manna L, Dijkstra M. Phase diagram of octapod-shaped nanocrystals in a quasi-two-dimensional planar geometry. J Chem Phys 2013; 138:154504. [DOI: 10.1063/1.4799269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
30
|
Bautista-Carbajal G, Moncho-Jordá A, Odriozola G. Further details on the phase diagram of hard ellipsoids of revolution. J Chem Phys 2013; 138:064501. [DOI: 10.1063/1.4789957] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Torquato S, Jiao Y. Effect of dimensionality on the percolation threshold of overlapping nonspherical hyperparticles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022111. [PMID: 23496464 DOI: 10.1103/physreve.87.022111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Indexed: 06/01/2023]
Abstract
We study the effect of dimensionality on the percolation threshold η(c) of identical overlapping nonspherical convex hyperparticles in d-dimensional Euclidean space R(d). This is done by formulating a scaling relation for η(c) that is based on a rigorous lower bound [Torquato, J. Chem. Phys. 136, 054106 (2012)] and a conjecture that hyperspheres provide the highest threshold, for any d, among all convex hyperparticle shapes (that are not a trivial affine transformation of a hypersphere). This scaling relation also exploits the recently discovered principle that low-dimensional continuum percolation behavior encodes high-dimensional information. We derive an explicit formula for the exclusion volume v(ex) of a hyperparticle of arbitrary shape in terms of its d-dimensional volume v, surface area s, and radius of mean curvature R[over ¯] (or, equivalently, mean width). These basic geometrical properties are computed for a wide variety of nonspherical hyperparticle shapes with random orientations across all dimensions, including, among other shapes, various polygons for d=2, Platonic solids, spherocylinders, parallepipeds, and zero-volume plates for d=3 and their appropriate generalizations for d≥4. Using this information, we compute the lower bound and scaling relation for η(c) for this comprehensive set of continuum percolation models across dimensions. We demonstrate that the scaling relation provides accurate upper-bound estimates of the threshold η(c) across dimensions and becomes increasingly accurate as the space dimension increases.
Collapse
Affiliation(s)
- S Torquato
- Department of Chemistry, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
32
|
Karayiannis NC, Foteinopoulou K, Laso M. Spontaneous crystallization in athermal polymer packings. Int J Mol Sci 2012; 14:332-58. [PMID: 23263666 PMCID: PMC3565267 DOI: 10.3390/ijms14010332] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 11/17/2022] Open
Abstract
We review recent results from extensive simulations of the crystallization of athermal polymer packings. It is shown that above a certain packing density, and for sufficiently long simulations, all random assemblies of freely-jointed chains of tangent hard spheres of uniform size show a spontaneous transition into a crystalline phase. These polymer crystals adopt predominantly random hexagonal close packed morphologies. An analysis of the local environment around monomers based on the shape and size of the Voronoi polyhedra clearly shows that Voronoi cells become more spherical and more symmetric as the system transits to the ordered state. The change in the local environment leads to an increase in the monomer translational contribution to the entropy of the system, which acts as the driving force for the phase transition. A comparison of the crystallization of hard-sphere polymers and monomers highlights similarities and differences resulting from the constraints imposed by chain connectivity.
Collapse
Affiliation(s)
- Nikos Ch. Karayiannis
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| | - Katerina Foteinopoulou
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| | - Manuel Laso
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| |
Collapse
|
33
|
de Graaf J, Filion L, Marechal M, van Roij R, Dijkstra M. Crystal-structure prediction via the Floppy-Box Monte Carlo algorithm: Method and application to hard (non)convex particles. J Chem Phys 2012; 137:214101. [DOI: 10.1063/1.4767529] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
Gabbrielli R, Jiao Y, Torquato S. Families of tessellations of space by elementary polyhedra via retessellations of face-centered-cubic and related tilings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041141. [PMID: 23214563 DOI: 10.1103/physreve.86.041141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Indexed: 06/01/2023]
Abstract
The problem of tiling or tessellating (i.e., completely filling) three-dimensional Euclidean space R(3) with polyhedra has fascinated people for centuries and continues to intrigue mathematicians and scientists today. Tilings are of fundamental importance to the understanding of the underlying structures for a wide range of systems in the biological, chemical, and physical sciences. In this paper, we enumerate and investigate the most comprehensive set of tilings of R(3) by any two regular polyhedra known to date. We find that among all of the Platonic solids, only the tetrahedron and octahedron can be combined to tile R(3). For tilings composed of only congruent tetrahedra and congruent octahedra, there seem to be only four distinct ratios between the sides of the two polyhedra. These four canonical periodic tilings are, respectively, associated with certain packings of tetrahedra (octahedra) in which the holes are octahedra (tetrahedra). Moreover, we derive two families of an uncountably infinite number of periodic tilings of tetrahedra and octahedra that continuously connect the aforementioned four canonical tilings with one another, containing the previously reported Conway-Jiao-Torquato family of tilings [Conway et al., Proc. Natl. Acad. Sci. USA 108, 11009 (2011)] as a special case. For tilings containing infinite planar surfaces, nonperiodic arrangements can be easily generated by arbitrary relative sliding along these surfaces. We also find that there are three distinct canonical periodic tilings of R(3) by congruent regular tetrahedra and congruent regular truncated tetrahedra associated with certain packings of tetrahedra (truncated tetrahedra) in which the holes are truncated tetrahedra (tetrahedra). Remarkably, we discover that most of the aforementioned periodic tilings can be obtained by "retessellating" the well-known tiling associated with the face-centered-cubic lattice, i.e., by combining the associated fundamental tiles (regular tetrahedra and octahedra) to form larger polyhedra.
Collapse
Affiliation(s)
- Ruggero Gabbrielli
- Interdisciplinary Laboratory for Computational Science, Department of Physics, University of Trento, 38123 Trento, Italy.
| | | | | |
Collapse
|
35
|
Atkinson S, Jiao Y, Torquato S. Maximally dense packings of two-dimensional convex and concave noncircular particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031302. [PMID: 23030907 DOI: 10.1103/physreve.86.031302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Indexed: 06/01/2023]
Abstract
Dense packings of hard particles have important applications in many fields, including condensed matter physics, discrete geometry, and cell biology. In this paper, we employ a stochastic search implementation of the Torquato-Jiao adaptive-shrinking-cell (ASC) optimization scheme [Nature (London) 460, 876 (2009)] to find maximally dense particle packings in d-dimensional Euclidean space R(d). While the original implementation was designed to study spheres and convex polyhedra in d≥3, our implementation focuses on d=2 and extends the algorithm to include both concave polygons and certain complex convex or concave nonpolygonal particle shapes. We verify the robustness of this packing protocol by successfully reproducing the known putative optimal packings of congruent copies of regular pentagons and octagons, then employ it to suggest dense packing arrangements of congruent copies of certain families of concave crosses, convex and concave curved triangles (incorporating shapes resembling the Mercedes-Benz logo), and "moonlike" shapes. Analytical constructions are determined subsequently to obtain the densest known packings of these particle shapes. For the examples considered, we find that the densest packings of both convex and concave particles with central symmetry are achieved by their corresponding optimal Bravais lattice packings; for particles lacking central symmetry, the densest packings obtained are nonlattice periodic packings, which are consistent with recently-proposed general organizing principles for hard particles. Moreover, we find that the densest known packings of certain curved triangles are periodic with a four-particle basis, and we find that the densest known periodic packings of certain moonlike shapes possess no inherent symmetries. Our work adds to the growing evidence that particle shape can be used as a tuning parameter to achieve a diversity of packing structures.
Collapse
Affiliation(s)
- Steven Atkinson
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersy 08544, USA
| | | | | |
Collapse
|
36
|
Hopkins AB, Stillinger FH, Torquato S. Nonequilibrium static diverging length scales on approaching a prototypical model glassy state. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021505. [PMID: 23005767 DOI: 10.1103/physreve.86.021505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 06/01/2023]
Abstract
Maximally random jammed states of hard spheres are prototypical glasses. We study the small wavenumber k behavior of the structure factor S(k) of overcompressed million-sphere packings as a function of density up to the jammed state. We find both a precursor to the glassy jammed state evident long before the jamming density is reached and two associated growing length scales, one extracted from the volume integral of the direct correlation function c(r) and the other from the small-k behavior of the structure factor S(k), that can diverge at the "critical" jammed state. We also define a nonequilibrium index X and use it to demonstrate that the packings studied are intrinsically nonequilibrium in nature well before the critical state is reached. The extension of the results reported in the present work to supercooled atomic-liquid models in which the atoms interact with both repulsive and attractive forces is also discussed.
Collapse
Affiliation(s)
- Adam B Hopkins
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|