1
|
Lhermerout R, Perkin S. A new methodology for a detailed investigation of quantized friction in ionic liquids. Phys Chem Chem Phys 2020; 22:455-466. [PMID: 31781711 DOI: 10.1039/c9cp05422g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When confined at the nanoscale between smooth surfaces, an ionic liquid forms a structured film responding to shear in a quantized way, i.e., with a friction coefficient indexed by the number of layers in the gap. So far, only a few experiments have been performed to study this phenomenon, because of the delicate nature of the measurements. We propose a new methodology to measure friction with a surface force balance, based on the simultaneous application of normal and lateral motions to the surfaces, allowing for a more precise, comprehensive and rapid determination of the friction response. We report on proof-of-concept experiments with an ionic liquid confined between mica surfaces in dry or wet conditions, showing the phenomenon of quantized friction with an unprecedented resolution. First, we show that the variation of the kinetic friction force with the applied load for a given layer is not linear, but can be quantitatively described by two additive contributions that are respectively proportional to the load and to the contact area. Then, we find that humidity improves the resistance of the layers to be squeezed-out and extends the range of loads in which the liquid behaves as a superlubricant, interpreted by an enhanced dissolution of the potassium ions on the mica leading to a larger surface charge. There, we note a liquid-like friction behavior, and observe in certain conditions a clear variation of the kinetic friction force over two decades of shearing velocities, that does not obey a simple Arrhenius dynamics.
Collapse
Affiliation(s)
- Romain Lhermerout
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.
| | | |
Collapse
|
2
|
Vidal V, Oliver C, Lastakowski H, Varas G, Géminard JC. Friction weakening by mechanical vibrations: A velocity-controlled process. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:91. [PMID: 31313027 DOI: 10.1140/epje/i2019-11855-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Frictional weakening by vibrations was first invoked in the 70s to explain unusual fault slips and earthquakes, low viscosity during the collapse of impact craters or the extraordinary mobility of sturzstroms, peculiar rock avalanches which travels large horizontal distances. This mechanism was further invoked to explain the remote triggering of earthquakes or the abnormally large runout of landslides or pyroclastic flows. Recent experimental and theoretical works pointed out that the key parameter which governs frictional weakening in sheared granular media is the characteristic velocity of the vibrations. Here we show that the mobility of the grains is not mandatory and that the vibration velocity governs the weakening of both granular and solid friction. The critical velocity leading to the transition from stick-slip motion to continuous sliding is in both cases of the same order of magnitude, namely a hundred microns per second. It is linked to the roughness of the surfaces in contact.
Collapse
Affiliation(s)
- V Vidal
- Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS, F-69342, Lyon, France
| | - C Oliver
- Instituto de Fisica, Pontificia Universidad Católica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - H Lastakowski
- Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS, F-69342, Lyon, France
| | - G Varas
- Instituto de Fisica, Pontificia Universidad Católica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - J -C Géminard
- Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS, F-69342, Lyon, France.
| |
Collapse
|
3
|
de Arcangelis L, Lippiello E, Pica Ciamarra M, Sarracino A. Induced and endogenous acoustic oscillations in granular faults. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 377:20170389. [PMID: 30478201 PMCID: PMC6282408 DOI: 10.1098/rsta.2017.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
The frictional properties of disordered systems are affected by external perturbations. These perturbations usually weaken the system by reducing the macroscopic friction coefficient. This friction reduction is of particular interest in the case of disordered systems composed of granular particles confined between two plates, as this is a simple model of seismic fault. Indeed, in the geophysical context frictional weakening could explain the unexpected weakness of some faults, as well as earthquake remote triggering. In this manuscript, we review recent results concerning the response of confined granular systems to external perturbations, considering the different mechanisms by which the perturbation could weaken a system, the relevance of the frictional reduction to earthquakes, as well as discussing the intriguing scenario whereby the weakening is not monotonic in the perturbation frequency, so that a re-entrant transition is observed, as the system first enters a fluidized state and then returns to a frictional state.This article is part of the theme issue 'Statistical physics of fracture and earthquakes'.
Collapse
Affiliation(s)
- L de Arcangelis
- Department of Engineering, University of Campania 'Luigi Vanvitelli', 81031 Aversa (CE), Italy
| | - E Lippiello
- Department of Mathematics and Physics, University of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy
| | - M Pica Ciamarra
- Division of Physics and Applied Physics, School of Physics and Mathematical Sciences, Nanyang, Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- CNR-SPIN, Department of Physics, University 'Federico II', Naples, Via Cintia, 80126 Napoli, Italy
| | - A Sarracino
- Department of Engineering, University of Campania 'Luigi Vanvitelli', 81031 Aversa (CE), Italy
| |
Collapse
|
4
|
Gnoli A, de Arcangelis L, Giacco F, Lippiello E, Ciamarra MP, Puglisi A, Sarracino A. Controlled Viscosity in Dense Granular Materials. PHYSICAL REVIEW LETTERS 2018; 120:138001. [PMID: 29694230 DOI: 10.1103/physrevlett.120.138001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/27/2017] [Indexed: 06/08/2023]
Abstract
We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency, we observe a reentrant transition, as a jammed system first enters a fluidized state, where the vane rotates with high constant velocity, and then returns to a frictional state, where the vane velocity is much lower. While the fluidization frequency is material independent, the viscosity recovery frequency shows a clear dependence on the material that we rationalize by relating this frequency to the balance between dissipative and inertial forces in the system. Molecular dynamics simulations well reproduce the experimental data, confirming the suggested theoretical picture.
Collapse
Affiliation(s)
- A Gnoli
- Institute for Complex Systems-CNR, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Department of Physics, University of Rome Sapienza, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - L de Arcangelis
- Department of Industrial and Information Engineering, University of Campania "Luigi Vanvitelli," Aversa (CE) 81031, Italy
| | - F Giacco
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - E Lippiello
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - M Pica Ciamarra
- CNR-SPIN, Department of Physics, University "Federico II," Naples, Via Cintia, 80126 Napoli, Italy
- Division of Physics and Applied Physics, School of Physics and Mathematical Sciences, Nanyang, Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - A Puglisi
- Institute for Complex Systems-CNR, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Department of Physics, University of Rome Sapienza, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - A Sarracino
- Institute for Complex Systems-CNR, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Department of Physics, University of Rome Sapienza, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
5
|
Giacco F, de Arcangelis L, Ciamarra MP, Lippiello E. Synchronized oscillations and acoustic fluidization in confined granular materials. Phys Rev E 2018; 97:010901. [PMID: 29448316 DOI: 10.1103/physreve.97.010901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 06/08/2023]
Abstract
According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.
Collapse
Affiliation(s)
- F Giacco
- Department of Mathematics and Physics, University of Campania "L. Vanvitelli," 81100 Caserta, Italy
| | - L de Arcangelis
- Department of Industrial and Information Engineering, University of Campania "L. Vanvitelli," 81031 Aversa (CE), Italy
| | - M Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University 637371, Singapore
- CNR-SPIN, Department of Physics, University of Naples "Federico II," 80100 Naples, Italy
| | - E Lippiello
- Department of Mathematics and Physics, University of Campania "L. Vanvitelli," 81100 Caserta, Italy
| |
Collapse
|
6
|
Giacco F, de Arcangelis L, Pica Ciamarra M, Lippiello E. Rattler-induced aging dynamics in jammed granular systems. SOFT MATTER 2017; 13:9132-9137. [PMID: 29184951 DOI: 10.1039/c7sm01976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Granular materials jam when developing a network of contact forces able to resist the applied stresses. Through numerical simulations of the dynamics of the jamming process, we show that the jamming transition does not occur when the kinetic energy vanishes. Rather, as the system jams, the kinetic energy becomes dominated by rattler particles, which scatter within their cages. The relaxation of the kinetic energy in the jammed configuration exhibits a double power-law decay, which we interpret in terms of the interplay between backbone and rattler particles.
Collapse
Affiliation(s)
- Ferdinando Giacco
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | | | | | | |
Collapse
|
7
|
Giacco F, Saggese L, de Arcangelis L, Lippiello E, Pica Ciamarra M. Dynamic Weakening by Acoustic Fluidization during Stick-Slip Motion. PHYSICAL REVIEW LETTERS 2015; 115:128001. [PMID: 26431017 DOI: 10.1103/physrevlett.115.128001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 06/05/2023]
Abstract
The unexpected weakness of some faults has been attributed to the emergence of acoustic waves that promote failure by reducing the confining pressure through a mechanism known as acoustic fluidization, also proposed to explain earthquake remote triggering. Here we validate this mechanism via the numerical investigation of a granular fault model system. We find that the stick-slip dynamics is affected only by perturbations applied at a characteristic frequency corresponding to oscillations normal to the fault, leading to gradual dynamical weakening as failure is approaching. Acoustic waves at the same frequency spontaneously emerge at the onset of failure in the absence of perturbations, supporting the relevance of acoustic fluidization in earthquake triggering.
Collapse
Affiliation(s)
- F Giacco
- CNR-SPIN, Department of Physics, University of Naples "Federico II," Naples 80126, Italy
- Department of Mathematics and Physics, Second University of Naples and CNISM, Caserta 81100, Italy
| | - L Saggese
- Department of Industrial and Information Engineering, Second University of Naples and CNISM, Aversa (CE) 81100, Italy
| | - L de Arcangelis
- Department of Industrial and Information Engineering, Second University of Naples and CNISM, Aversa (CE) 81100, Italy
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA
| | - E Lippiello
- Department of Mathematics and Physics, Second University of Naples and CNISM, Caserta 81100, Italy
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA
| | - M Pica Ciamarra
- CNR-SPIN, Department of Physics, University of Naples "Federico II," Naples 80126, Italy
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
8
|
Granular friction: Triggering large events with small vibrations. Sci Rep 2015; 5:13455. [PMID: 26334133 PMCID: PMC4558544 DOI: 10.1038/srep13455] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022] Open
Abstract
Triggering large-scale motion by imposing vibrations to a system can be encountered in many situations, from daily-life shaking of saltcellar to silo unclogging or dynamic earthquakes triggering. In the well-known situation of solid or granular friction, the acceleration of imposed vibrations has often been proposed as the governing parameter for the transition between stick-slip motion and continuous sliding. The threshold acceleration for the onset of continuous slip motion or system unjamming is usually found of the order of the gravitational acceleration. These conclusions are mostly drawn from numerical studies. Here, we investigate, in the laboratory, granular friction by shearing a layer of grains subjected to horizontal vibrations. We show that, in contrast with previous results, the quantity that controls the frictional properties is the characteristic velocity, and not the acceleration, of the imposed mechanical vibrations. Thus, when the system is statically loaded, the typical acceleration of the vibrations which trigger large slip events is much smaller than the gravitational acceleration. These results may be relevant to understand dynamic earthquake triggering by small ground perturbations.
Collapse
|
9
|
Chen W, Foster AS, Alava MJ, Laurson L. Stick-slip control in nanoscale boundary lubrication by surface wettability. PHYSICAL REVIEW LETTERS 2015; 114:095502. [PMID: 25793825 DOI: 10.1103/physrevlett.114.095502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 06/04/2023]
Abstract
We study the effect of atomic-scale surface-lubricant interactions on nanoscale boundary-lubricated friction by considering two example surfaces-hydrophilic mica and hydrophobic graphene-confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic-scale capillary water bridges formed around the potassium ions of mica. However, only smooth sliding without stick-slip events is observed for water confined by graphene, as well as for thicker water layers confined by mica. Thus, our results illustrate how atomic-scale details affect the wettability of the confining surfaces and consequently control the presence or absence of stick-slip dynamics in nanoscale friction.
Collapse
Affiliation(s)
- Wei Chen
- Department of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
- Supercomputing Center of CAS, Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Adam S Foster
- Department of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
| | - Mikko J Alava
- Department of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
| | - Lasse Laurson
- Department of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
| |
Collapse
|