1
|
Bustingorry S, Guyonnet J, Paruch P, Agoritsas E. A numerical study of the statistics of roughness parameters for fluctuating interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:345001. [PMID: 34126604 DOI: 10.1088/1361-648x/ac0b20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Self-affine rough interfaces are ubiquitous in experimental systems, and display characteristic scaling properties as a signature of the nature of disorder in their supporting medium, i.e. of the statistical features of its heterogeneities. Different methods have been used to extract roughness information from such self-affine structures, and in particular their scaling exponents and associated prefactors. Notably, for an experimental characterization of roughness features, it is of paramount importance to properly assess sample-to-sample fluctuations of roughness parameters. Here, by performing scaling analysis based on displacement correlation functions in real and reciprocal space, we compute statistical properties of the roughness parameters. As an ideal, artifact-free reference case study and particularly targeting finite-size systems, we consider three cases of numerically simulated one-dimensional interfaces: (i) elastic lines under thermal fluctuations and free of disorder, (ii) directed polymers in equilibrium with a disordered energy landscape, and (iii) elastic lines in the critical depinning state when the external applied driving force equals the depinning force set by disorder. Our results show that sample-to-sample fluctuations are rather large when measuring the roughness exponent. These fluctuations are also relevant for roughness amplitudes. Therefore a minimum of independent interface realizations (at least a few tens in our numerical simulations) should be used to guarantee sufficient statistical averaging, an issue often overlooked in experimental reports.
Collapse
Affiliation(s)
- S Bustingorry
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, Av. Bustillo 9500, R8402AGP San Carlos de Bariloche, Río Negro, Argentina
| | - J Guyonnet
- DQMP, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - P Paruch
- DQMP, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - E Agoritsas
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Le Goff T, To TBT, Pierre-Louis O. Shear dynamics of confined membranes. SOFT MATTER 2021; 17:5467-5485. [PMID: 34019067 DOI: 10.1039/d1sm00322d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We model the nonlinear response of a lubricated contact composed of a two-dimensional lipid membrane immersed in a simple fluid between two parallel flat and porous walls under shear. The nonlinear dynamics of the membrane gives rise to a rich dynamical behavior depending on the shear velocity. In quiescent conditions (i.e., absence of shear), the membrane freezes into a disordered labyrinthine wrinkle pattern. We determine the wavelength of this pattern as a function of the excess area of the membrane for a fairly general form of the confinement potential using a sine-profile ansatz for the wrinkles. In the presence of shear, we find four different regimes depending on the shear rate. Regime I. For small shear, the labyrinthine pattern is still frozen, but exhibits a small drift which is mainly along the shear direction. In this regime, the tangential forces on the walls due to the presence of the membrane increase linearly with the shear rate. Regime II. When the shear rate is increased above a critical value, the membrane rearranges, and wrinkles start to align along the shear direction. This regime is accompanied by a sharp drop of the tangential forces on the wall. The membrane usually reaches a steady-state configuration drifting with a small constant velocity at long times. However, we also rarely observe oscillatory dynamics in this regime. Regime III. For larger shear rates, the wrinkles align strongly along the shear direction, with a set of dislocation defects which assemble in pairs. The tangential forces are then controlled by the number of dislocations, and by the number of wrinkles between the two dislocations within each dislocation pairs. In this dislocation-dominated regime, the tangential forces in the transverse direction most often exceed those in the shear direction. Regime IV. For even larger shear, the membrane organizes into a perfect array of parallel stripes with no defects. The wavelength of the wrinkles is still identical to the wavelength in the absence of shear. In this final regime, the tangential forces due to the membrane vanish. These behaviors give rise to a non-linear rheological behavior of lubricated contacts containing membranes.
Collapse
Affiliation(s)
- Thomas Le Goff
- Aix-Marseille Univ, CNRS, IBDM, Turing Centre for Living System, Marseille, France
| | - Tung B T To
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France.
| |
Collapse
|
3
|
To TBT, Le Goff T, Pierre-Louis O. Adhesion dynamics of confined membranes. SOFT MATTER 2018; 14:8552-8569. [PMID: 30328887 DOI: 10.1039/c8sm01567h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on the modeling of the dynamics of confined lipid membranes. We derive a thin film model in the lubrication limit which describes an inextensible liquid membrane with bending rigidity confined between two adhesive walls. The resulting equations share similarities with the Swift-Hohenberg model. However, inextensibility is enforced by a time-dependent nonlocal tension. Depending on the excess membrane area available in the system, three different dynamical regimes, denoted as A, B and C, are found from the numerical solution of the model. In regime A, membranes with small excess area form flat adhesion domains and freeze. Such freezing is interpreted by means of an effective model for curvature-driven domain wall motion. The nonlocal membrane tension tends to a negative value corresponding to the linear stability threshold of flat domain walls in the Swift-Hohenberg equation. In regime B, membranes with intermediate excess areas exhibit endless coarsening with coexistence of flat adhesion domains and wrinkle domains. The tension tends to the nonlinear stability threshold of flat domain walls in the Swift-Hohenberg equation. The fraction of the system covered by the wrinkle phase increases linearly with the excess area in regime B. In regime C, membranes with large excess area are completely covered by a frozen labyrinthine pattern of wrinkles. As the excess area is increased, the tension increases and the wavelength of the wrinkles decreases. For large membrane area, there is a crossover to a regime where the extrema of the wrinkles are in contact with the walls. In all regimes after an initial transient, robust localised structures form, leading to an exact conservation of the number of adhesion domains.
Collapse
Affiliation(s)
- Tung B T To
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France.
| | | | | |
Collapse
|
4
|
Dharan N, Farago O. Interplay between membrane elasticity and active cytoskeleton forces regulates the aggregation dynamics of the immunological synapse. SOFT MATTER 2017; 13:6938-6946. [PMID: 28825081 DOI: 10.1039/c7sm01064h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adhesion between a T cell and an antigen presenting cell is achieved by TCR-pMHC and LFA1-ICAM1 protein complexes. These segregate to form a special pattern, known as the immunological synapse (IS), consisting of a central quasi-circular domain of TCR-pMHC bonds surrounded by a peripheral domain of LFA1-ICAM1 complexes. Insights gained from imaging studies had led to the conclusion that the formation of the central adhesion domain in the IS is driven by active (ATP-driven) mechanisms. Recent studies, however, suggested that passive (thermodynamic) mechanisms may also play an important role in this process. Here, we present a simple physical model, taking into account the membrane-mediated thermodynamic attraction between the TCR-pMHC bonds and the effective forces that they experience due to ATP-driven actin retrograde flow and transport by dynein motor proteins. Monte Carlo simulations of the model exhibit a good spatio-temporal agreement with the experimentally observed pattern evolution of the TCR-pMHC microclusters. The agreement is lost when one of the aggregation mechanisms is "muted", which helps to identify their respective roles in the process. We conclude that actin retrograde flow drives the centripetal motion of TCR-pMHC bonds, while the membrane-mediated interactions facilitate microcluster formation and growth. In the absence of dynein motors, the system evolves into a ring-shaped pattern, which highlights the role of dynein motors in the formation of the final concentric pattern. The interplay between the passive and active mechanisms regulates the rate of the accumulation process, which in the absence of one them proceeds either too quickly or slowly.
Collapse
Affiliation(s)
- Nadiv Dharan
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel.
| | | |
Collapse
|
5
|
Compartmentalization of the Cell Membrane. J Mol Biol 2016; 428:4739-4748. [DOI: 10.1016/j.jmb.2016.09.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022]
|
6
|
Eggeling C, Honigmann A. Closing the gap: The approach of optical and computational microscopy to uncover biomembrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2558-2568. [DOI: 10.1016/j.bbamem.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/15/2022]
|
7
|
Dharan N, Farago O. Formation of semi-dilute adhesion domains driven by weak elasticity-mediated interactions. SOFT MATTER 2016; 12:6649-6655. [PMID: 27426284 DOI: 10.1039/c6sm01096b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell-cell adhesion is established by specific binding of receptor and ligand proteins anchored in the cell membranes. The adhesion bonds attract each other and often aggregate into large clusters that are central to many biological processes. One possible origin of attractive interactions between adhesion bonds is the elastic response of the membranes to their deformation by the bonds. Here, we analyze these elasticity-mediated interactions using a novel mean-field approach. Our analysis of systems at different densities of bonds, ϕ, reveals that the phase diagram, i.e., the binodal and spinodal lines, exhibit a nearly universal behavior when the temperature T is plotted against the scaled density x = ϕξ(2), where ξ is the linear size of the membrane's region affected by the presence of a single isolated bond. The critical point (ϕc , Tc) is located at very low densities, and slightly below Tc we identify phase coexistence between two low-density phases. Dense adhesion domains are observed only when the height by which the bonds deform the membranes, h0, is much larger than their thermal roughness, Δ, which occurs at very low temperatures T≪Tc. We, thus, conclude that the elasticity-mediated interactions are weak and cannot be regarded as responsible for the formation of dense adhesion domains. The weakness of the elasticity-mediated effect and its relevance to dilute systems only can be attributed to the fact that the membrane's elastic energy saturates in the semi-dilute regime, when the typical spacing between the bonds r≳ξ, i.e., for x≲ 1. Therefore, at higher densities, only the mixing entropy of the bonds (which always favors uniform distributions) is thermodynamically relevant. We discuss the implications of our results for the question of immunological synapse formation, and demonstrate that the elasticity-mediated interactions may be involved in the aggregation of these semi-dilute membrane domains.
Collapse
Affiliation(s)
- Nadiv Dharan
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | |
Collapse
|
8
|
Le Goff T, Politi P, Pierre-Louis O. Transition to coarsening for confined one-dimensional interfaces with bending rigidity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022918. [PMID: 26382487 DOI: 10.1103/physreve.92.022918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 06/05/2023]
Abstract
We discuss the nonlinear dynamics and fluctuations of interfaces with bending rigidity under the competing attractions of two walls with arbitrary permeabilities. This system mimics the dynamics of confined membranes. We use a two-dimensional hydrodynamic model, where membranes are effectively one-dimensional objects. In a previous work [T. Le Goff et al., Phys. Rev. E 90, 032114 (2014)], we have shown that this model predicts frozen states caused by bending rigidity-induced oscillatory interactions between kinks (or domain walls). We here demonstrate that in the presence of tension, potential asymmetry, or thermal noise, there is a finite threshold above which frozen states disappear, and perpetual coarsening is restored. Depending on the driving force, the transition to coarsening exhibits different scenarios. First, for membranes under tension, small tensions can only lead to transient coarsening or partial disordering, while above a finite threshold, membrane oscillations disappear and perpetual coarsening is found. Second, potential asymmetry is relevant in the nonconserved case only, i.e., for permeable walls, where it induces a drift force on the kinks, leading to a fast coarsening process via kink-antikink annihilation. However, below some threshold, the drift force can be balanced by the oscillatory interactions between kinks, and frozen adhesion patches can still be observed. Finally, at long times, noise restores coarsening with standard exponents depending on the permeability of the walls. However, the typical time for the appearance of coarsening exhibits an Arrhenius form. As a consequence, a finite noise amplitude is needed in order to observe coarsening in observable time.
Collapse
Affiliation(s)
- Thomas Le Goff
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne, France
| | - Paolo Politi
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- INFN Sezione di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne, France
| |
Collapse
|
9
|
Dharan N, Farago O. Formation of adhesion domains in stressed and confined membranes. SOFT MATTER 2015; 11:3780-3785. [PMID: 25833123 DOI: 10.1039/c5sm00295h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The adhesion bonds connecting a lipid bilayer to an underlying surface may undergo a condensation transition resulting from an interplay between a short range attractive potential between them, and a long range fluctuation-induced potential of mean force. Here, we use computer simulations of a coarse-grained molecular model of supported lipid bilayers to study this transition in confined membranes, and in membranes subjected to a non-vanishing surface tension. Our results show that confinement may alter significantly the condensation transition of the adhesion bonds, whereas the application of surface tension has a very minor effect on it. We also investigate domain formation in membranes under negative tension which, in free membranes, causes the enhancement of the amplitude of membrane thermal undulations. Our results indicate that in supported membranes, this effect of a negative surface tension on the fluctuation spectrum is largely eliminated by the pressure resulting from the mixing entropy of the adhesion bonds.
Collapse
Affiliation(s)
- Nadiv Dharan
- Department of Biomedical Engineering, Ben Gurion University, Be'er Sheva 84105, Israel
| | | |
Collapse
|
10
|
Sadeghi S, Vink RLC. Membrane sorting via the extracellular matrix. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:527-31. [PMID: 25450353 DOI: 10.1016/j.bbamem.2014.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Abstract
We consider the coupling between a membrane and the extracellular matrix. Computer simulations demonstrate that the latter coupling is able to sort lipids. It is assumed that membranes are elastic manifolds, and that this manifold is disrupted by the extracellular matrix. For a solid-supported membrane with an actin network on top, regions of positive curvature are induced below the actin fibers. A similar mechanism is conceivable by assuming that the proteins which connect the cytoskeleton to the membrane induce local membrane curvature. The regions of non-zero curvature exist irrespective of any phase transition the lipids themselves may undergo. For lipids that prefer certain curvature, the extracellular matrix thus provides a spatial template for the resulting lateral domain structure of the membrane.
Collapse
Affiliation(s)
- Sina Sadeghi
- Institute of Theoretical Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.
| | - Richard L C Vink
- Institute of Theoretical Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
11
|
Le Goff T, Politi P, Pierre-Louis O. Frozen states and order-disorder transition in the dynamics of confined membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032114. [PMID: 25314402 DOI: 10.1103/physreve.90.032114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 06/04/2023]
Abstract
The adhesion dynamics of a membrane confined between two permeable walls is studied using a two-dimensional hydrodynamic model. The membrane morphology decomposes into adhesion patches on the upper and the lower walls and obeys a nonlinear evolution equation that resembles that of phase-separation dynamics, which is known to lead to coarsening, i.e., to the endless growth of the adhesion patches. However, due to the membrane bending rigidity, the system evolves toward a frozen state without coarsening. This frozen state exhibits an order-disorder transition when increasing the permeability of the walls.
Collapse
Affiliation(s)
- Thomas Le Goff
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Paolo Politi
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy and INFN Sezione di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| |
Collapse
|
12
|
Dharan N, Farago O. Coarse-grained molecular simulations of membrane adhesion domains. J Chem Phys 2014; 141:024903. [DOI: 10.1063/1.4886397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
13
|
Honigmann A, Sadeghi S, Keller J, Hell SW, Eggeling C, Vink R. A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 2014; 3:e01671. [PMID: 24642407 PMCID: PMC3957580 DOI: 10.7554/elife.01671] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/14/2014] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic cell membrane is connected to a dense actin rich cortex. We present FCS and STED experiments showing that dense membrane bound actin networks have severe influence on lipid phase separation. A minimal actin cortex was bound to a supported lipid bilayer via biotinylated lipid streptavidin complexes (pinning sites). In general, actin binding to ternary membranes prevented macroscopic liquid-ordered and liquid-disordered domain formation, even at low temperature. Instead, depending on the type of pinning lipid, an actin correlated multi-domain pattern was observed. FCS measurements revealed hindered diffusion of lipids in the presence of an actin network. To explain our experimental findings, a new simulation model is proposed, in which the membrane composition, the membrane curvature, and the actin pinning sites are all coupled. Our results reveal a mechanism how cells may prevent macroscopic demixing of their membrane components, while at the same time regulate the local membrane composition. DOI: http://dx.doi.org/10.7554/eLife.01671.001.
Collapse
Affiliation(s)
- Alf Honigmann
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sina Sadeghi
- Institute of Theoretical Physics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jan Keller
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Eggeling
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard Vink
- Institute of Theoretical Physics, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Palmieri B, Safran SA. Hybrid lipids increase the probability of fluctuating nanodomains in mixed membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5246-5261. [PMID: 23530895 DOI: 10.1021/la4006168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated, and hybrid lipids (with one saturated and one unsaturated hydrocarbon chain). The hybrids are line-active and can reduce the packing incompatibility between the saturated and unsaturated lipids. We introduce a lattice model that extends previous studies by taking into account the dependence of the interactions of the hybrid lipids on their orientations in a simple way. A methodology to recast the free energy of the lattice model in terms of a continuous, isotropic field theory is proposed and used to analyze composition fluctuations in the one-phase region (above the critical temperature). The effect of hybrid lipids on fluctuation domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids; this implies that nanoscale fluctuation domains are more probable compared to the case with no hybrids. Smaller correlated fluctuation domains arise even when the temperature is close to a critical point, where very large correlation lengths are normally expected. This decrease in the correlation length is largest as the hybrid composition tends toward a crossover value above which stripelike fluctuations are predicted. This crossover value defines the Lifshitz line. The characteristic wavelength of the stripelike fluctuations is large close to the Lifshitz point but decreases toward a molecular size in a membrane that contains only hybrids. Micrometer size, stripelike domains have recently been observed experimentally in giant unilamelar vesicles (GUVs) made of saturated, unsaturated, and hybrid lipids. These results suggest that the line activity of hybrid lipids in such mixtures may be significant only at large hybrid fractions; in that regime, the interface between domains can be diffuse and several hybrid molecules with correlated orientations can separate saturated and unsaturated lipid regions.
Collapse
Affiliation(s)
- Benoit Palmieri
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|