1
|
Dornheim T, Döppner T, Baczewski AD, Tolias P, Böhme MP, Moldabekov ZA, Gawne T, Ranjan D, Chapman DA, MacDonald MJ, Preston TR, Kraus D, Vorberger J. X-ray Thomson scattering absolute intensity from the f-sum rule in the imaginary-time domain. Sci Rep 2024; 14:14377. [PMID: 38909077 PMCID: PMC11193768 DOI: 10.1038/s41598-024-64182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024] Open
Abstract
We present a formally exact and simulation-free approach for the normalization of X-ray Thomson scattering (XRTS) spectra based on the f-sum rule of the imaginary-time correlation function (ITCF). Our method works for any degree of collectivity, over a broad range of temperatures, and is applicable even in nonequilibrium situations. In addition to giving us model-free access to electronic correlations, this new approach opens up the intriguing possibility to extract a plethora of physical properties from the ITCF based on XRTS experiments.
Collapse
Affiliation(s)
- T Dornheim
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.
| | - T Döppner
- Lawrence Livermore National Laboratory (LLNL), California, 94550, Livermore, USA
| | - A D Baczewski
- Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm, 100 44, Sweden
| | - M P Böhme
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Zh A Moldabekov
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - Th Gawne
- Center for Advanced Systems Understanding (CASUS), 02826, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - D Ranjan
- Institut für Physik, Universität Rostock, 18057, Rostock, Germany
| | - D A Chapman
- First Light Fusion, Yarnton, Oxfordshire, UK
| | - M J MacDonald
- Lawrence Livermore National Laboratory (LLNL), California, 94550, Livermore, USA
| | | | - D Kraus
- Institut für Physik, Universität Rostock, 18057, Rostock, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| |
Collapse
|
2
|
Faussurier G, Blancard C, Bethkenhagen M. Carbon ionization from a quantum average-atom model up to gigabar pressures. Phys Rev E 2021; 104:025209. [PMID: 34525570 DOI: 10.1103/physreve.104.025209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
We use a nonrelativistic average-atom model to calculate carbon ionization at megabar and gigabar pressures. The pressure is calculated using the stress-tensor method. The electronic electrical conductivity is also considered using the Kubo-Greenwood approach. Comparisons are made with quantum molecular dynamic simulations. A good agreement is obtained for the pressure between the average-atom model and the quantum molecular dynamic simulations in the regime of gigabar pressures. However, the discrepancy already seen with the PURGATORIO code for the average ionization deduced from the quantum molecular dynamic simulations is also observed here with the present average-atom model. Excellent agreement with the PURGATORIO code is found for the average ionization.
Collapse
Affiliation(s)
- Gérald Faussurier
- CEA, DAM, DIF, F-91297 Arpajon, France and Université Paris-Saclay, CEA, LMCE, F-91680 Bruyères-le-Châtel, France
| | - Christophe Blancard
- CEA, DAM, DIF, F-91297 Arpajon, France and Université Paris-Saclay, CEA, LMCE, F-91680 Bruyères-le-Châtel, France
| | - Mandy Bethkenhagen
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, F-69364 Lyon Cedex 07, France and University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
3
|
Faussurier G. Electron-ion coupling factor for temperature relaxation in dense plasmas. Phys Rev E 2020; 101:023206. [PMID: 32168554 DOI: 10.1103/physreve.101.023206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
We compare two formulas obtained from first principles to calculate the electron-ion coupling factor for temperature relaxation in dense plasmas. The quantum average-atom model is used to calculate this electron-ion coupling factor. It is shown that if the two formulas agree at sufficiently high temperature so that the potential energy is of limited importance, i.e., when the plasma is said to be kinetic, and are consistent with the Landau-Spitzer formula, then they strongly differ in the warm-dense-matter regime. Only one of the two is shown to be consistent with quantum molecular dynamics approach. We use this point to determine which formula is valid to describe temperature relaxation between electrons and ions in warm and hot dense plasmas.
Collapse
|
4
|
Faussurier G, Blancard C. Electrical resistivity calculations in dense plasmas. Phys Rev E 2019; 100:033202. [PMID: 31640046 DOI: 10.1103/physreve.100.033202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 11/07/2022]
Abstract
We present calculations of electrical resistivity in dense plasmas using the average-atom model. The Born approximation is proposed to improve the computations especially in the hot domain of the density and temperature plane. Both the nonrelativistic and relativistic regimes are considered. Numerical examples are given.
Collapse
|
5
|
Faussurier G, Blancard C. Pressure in warm and hot dense matter using the average-atom model. Phys Rev E 2019; 99:053201. [PMID: 31212555 DOI: 10.1103/physreve.99.053201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Expressions of pressure in warm and hot dense matter using the average-atom model are presented. They are based on the stress-tensor approach. Nonrelativistic and relativistic cases are considered. The obtained formulas are simple and can be easily implemented in an average-atom model code. Comparisons with experimental data and quantum molecular dynamics and path integral Monte Carlo simulations are shown. The present formalism agrees well with experimental results for a large variety of elements in the warm dense matter regime and with ab initio simulations in the warm and hot dense matter regime for aluminum.
Collapse
|
6
|
Faussurier G, Blancard C. Multidimensional Chebyshev interpolation for warm and hot dense matter. Phys Rev E 2017; 95:053308. [PMID: 28618590 DOI: 10.1103/physreve.95.053308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 06/07/2023]
Abstract
We propose a scheme based on a multidimensional Chebyshev interpolation to approximate smooth functions that depend on more than one variable. The present method generalizes the one dimensional Chebyshev approximation. The multidimensional approach can be used for generating databases like equation of state in the warm and hot dense matter. It is well suited to the present advance of massively parallel supercomputers.
Collapse
|
7
|
Clérouin J, Desbiens N, Dubois V, Arnault P. Bayesian inference of x-ray diffraction spectra from warm dense matter with the one-component-plasma model. Phys Rev E 2017; 94:061202. [PMID: 28085351 DOI: 10.1103/physreve.94.061202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/07/2022]
Abstract
We show that the Bayesian inference of recently measured x-ray diffraction spectra from laser-shocked aluminum [L. B. Fletcher et al., Nat. Photon. 9, 274 (2015)10.1038/nphoton.2015.41] with the one-component-plasma (OCP) model performs remarkably well at estimating the ionic density and temperature. This statistical approach requires many evaluations of the OCP static structure factor, which were done using a recently derived analytic fit. The atomic form factor is approximated by an exponential function in the diffraction window of the first peak. The electronic temperature is then estimated from a comparison of this approximated form factor with the electronic structure of an average atom model. Out-of-equilibrium states, with electrons hotter than ions, are diagnosed for the spectra obtained early after the pump, whereas at a late time delay the plasma is at thermal equilibrium. Apart from the present findings, this OCP-based modeling of warm dense matter has an important role to play in the interpretation of x-ray Thomson scattering measurements currently performed at large laser facilities.
Collapse
|
8
|
Faussurier G, Blancard C. Temperature relaxation in dense plasma mixtures. Phys Rev E 2016; 94:033210. [PMID: 27739738 DOI: 10.1103/physreve.94.033210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/07/2022]
Abstract
We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.
Collapse
|
9
|
Johnson WR, Nilsen J. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter. Phys Rev E 2016; 93:033205. [PMID: 27078473 DOI: 10.1103/physreve.93.033205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 11/07/2022]
Abstract
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Collapse
Affiliation(s)
- W R Johnson
- Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - J Nilsen
- Lawrence Livermore National Laboratory,PO Box 808, Livermore, California 94551, USA
| |
Collapse
|
10
|
Baczewski AD, Shulenburger L, Desjarlais MP, Hansen SB, Magyar RJ. X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition. PHYSICAL REVIEW LETTERS 2016; 116:115004. [PMID: 27035307 DOI: 10.1103/physrevlett.116.115004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 06/05/2023]
Abstract
X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.
Collapse
Affiliation(s)
- A D Baczewski
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - L Shulenburger
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - M P Desjarlais
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - S B Hansen
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - R J Magyar
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
11
|
Abstract
We present a model to calculate temperature-relaxation rates in dense plasmas. The electron-ion interaction potential and the thermodynamic data of interest are provided by an average-atom model. This approach allows the study of the temperature relaxation in a two-temperature electron-ion system.
Collapse
|
12
|
Faussurier G, Blancard C. Out-of-equilibrium conditions in x-ray Thomson scattering experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:063104. [PMID: 26172805 DOI: 10.1103/physreve.91.063104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 06/04/2023]
Abstract
We study out-of-equilibrium conditions in recent x-ray Thomson scattering experiments performed in warm dense matter. We use an effective one-component plasma model to characterize the states in which electron and ion temperatures are different. An estimation of the ion temperature is obtained. This method is tested against two recent experiments. Strong out-of-equilibrium conditions are found.
Collapse
|
13
|
Hou Y, Bredow R, Yuan J, Redmer R. Average-atom model combined with the hypernetted chain approximation applied to warm dense matter. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033114. [PMID: 25871231 DOI: 10.1103/physreve.91.033114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 06/04/2023]
Abstract
We have combined the average-atom model with the hypernetted chain approximation (AAHNC) to describe the electronic and ionic structure in the warm dense matter regime. On the basis of the electronic and ionic structures, the x-ray Thomson scattering (XRTS) spectrum is calculated using the random-phase approximation. While the electronic structure is described within the average-atom model, the effects of other ions on the electronic structure are considered using an integral equation method of the theory of liquids, namely the hypernetted chain approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution. Finally, the electronic and ionic structures are determined self-consistently. The XRTS spectrum is calculated according to the Chihara formula, where the scattering contributions are divided into three components: elastic, bound-free, and free-free. Comparison of the present AAHNC results with other theoretical models and experimental data shows very good agreement. Thus the AAHNC model can give a reasonable description of the electronic and ionic structure in warm dense matter.
Collapse
Affiliation(s)
- Yong Hou
- Department of Physics, College of Science, National University of Defense Technology, 410073 Changsha, People's Republic of China
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Richard Bredow
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| | - Jianmin Yuan
- Department of Physics, College of Science, National University of Defense Technology, 410073 Changsha, People's Republic of China
- IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ronald Redmer
- Institute of Physics, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
14
|
Faussurier G, Blancard C. Resistivity saturation in warm dense matter. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:013105. [PMID: 25679721 DOI: 10.1103/physreve.91.013105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 06/04/2023]
Abstract
Electrical resistivity is shown to saturate in solid-density aluminum in the warm dense matter regime. Calculations are done using the average-atom model SCAALP and the finite-temperature Ziman-Evans formula for electrical resistivity. The mean free path is estimated using the Drude law. This mean free path is shown to present a minimum of the order of the interatomic spacing.
Collapse
|
15
|
Johnson WR, Nilsen J. Thomson scattering from a three-component plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:023107. [PMID: 25353586 DOI: 10.1103/physreve.89.023107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Indexed: 06/04/2023]
Abstract
A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].
Collapse
Affiliation(s)
- W R Johnson
- Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - J Nilsen
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| |
Collapse
|
16
|
Souza AN, Perkins DJ, Starrett CE, Saumon D, Hansen SB. Predictions of x-ray scattering spectra for warm dense matter. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:023108. [PMID: 25353587 DOI: 10.1103/physreve.89.023108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 06/04/2023]
Abstract
We present calculations of x-ray scattering spectra based on ionic and electronic structure factors that are computed from a new model for warm dense matter. In this model, which has no free parameters, the ionic structure is determined consistently with the electronic structure of the bound and free states. The x-ray scattering spectrum is thus fully determined by the plasma temperature, density and nuclear charge, and the experimental parameters. The combined model of warm dense matter and of the x-ray scattering theory is validated against an experiment on room-temperature, solid beryllium. It is then applied to experiments on warm dense beryllium and aluminum. Generally good agreement is found with the experiments. However, some significant discrepancies are revealed and appraised. Based on the strength of our model, we discuss the current state of x-ray scattering experiments on warm dense matter and their potential to determine plasma parameters, to discriminate among models, and to reveal interesting and difficult to model physics in dense plasmas.
Collapse
Affiliation(s)
- A N Souza
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48019, USA
| | - D J Perkins
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - C E Starrett
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - D Saumon
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - S B Hansen
- Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
17
|
Starrett CE, Saumon D. Electronic and ionic structures of warm and hot dense matter. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:013104. [PMID: 23410443 DOI: 10.1103/physreve.87.013104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Indexed: 06/01/2023]
Abstract
The results of a numerical implementation of the recent average atom model including ion-ion correlations of Starrett and Saumon [Phys. Rev. E 85, 026403 (2012)] are presented. The solution is obtained by coupling an average atom model to a two-component plasma model of electrons and ions. The two models are solved self-consistently and results are given in the form of pair distribution functions. Ion-ion pair distribution functions for hydrogen, carbon, aluminum, and iron are compared to quantum and Thomas-Fermi molecular dynamics simulations as well as path-integral Monte Carlo calculations and good agreement is found for a wide variety of plasma conditions in the warm and hot dense matter regime.
Collapse
Affiliation(s)
- C E Starrett
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|