1
|
Tautan AM, Andrei AG, Smeralda CL, Vatti G, Rossi S, Ionescu B. Unsupervised learning from EEG data for epilepsy: A systematic literature review. Artif Intell Med 2025; 162:103095. [PMID: 40022810 DOI: 10.1016/j.artmed.2025.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/02/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND AND OBJECTIVES Epilepsy is a neurological disorder characterized by recurrent epileptic seizures, whose neurophysiological signature is altered electroencephalographic (EEG) activity. The use of artificial intelligence (AI) methods on EEG data can positively impact the management of the disease, significantly improving diagnostic and prognostic accuracy as well as treatment outcomes. Our work aims to systematically review the available literature on the use of unsupervised machine learning methods on EEG data in epilepsy, focusing on methodological and clinical differences in terms of algorithms used and clinical applications. METHODS Following the PRISMA guidelines, a systematic literature search was performed in several databases for papers published in the last 10 years. Studies employing both unsupervised and self-supervised methods for the classification of EEG data in epilepsy patients were included. The main outcomes of the study were: (i) to provide an overview of the datasets used as input to train the algorithms; (ii) to identify trends in pre-processing, algorithm architectures, validation, and metrics for performance estimation; (iii) to identify and review the clinical applications of AI in epilepsy patients. RESULTS A total of 108 studies met the inclusion criteria. Of them, 86 (79.6 %) have been published in the last 5 years and 60 (55.5 %) in the last two years. The most used validation methods were: hold-out in 37 (34.2 %), k-fold-cross validation in 35 (32.4 %), and leave-one-out in 19 (17.6 %) studies, respectively. Accuracy, sensitivity, and specificity were the most used performance metrics being reported in 71 (65.7 %), 62 (57.4 %), and 42 (39.8 %) studies, respectively, followed by F1-score (27 studies; 25 %), precision (26 studies; 24 %), area under the curve (25 studies; 23.1 %), and false positive rate (22 studies; 20.3 %). Furthermore, 42 (38.9 %) compared to 63 (58.3 %) studies used individual patient versus multiple patients models, respectively. Finally, concerning the clinical applications of unsupervised learning methods on epilepsy patients, we identified six main fields of interest: seizure detection (69 studies; 63.9 %), seizure prediction (27 studies; 25 %), signal propagation and characterization (2 studies; 1.8 %), seizure localization (4 studies; 3.7 %), and seizure classification (22 studies; 20.3 %), respectively. CONCLUSION The results of this review suggest that the interest in the use of unsupervised learning methods in epilepsy has significantly increased in recent years. From a methodological perspective, the input EEG datasets used for training and testing the algorithms remain the hardest challenge. From a clinical standpoint, the vast majority of studies addressed seizure detection, prediction, and classification whereas studies focusing on seizure characterization and localization are lacking. Future work that can potentially improve the performance of these algorithms includes the use of context information via reinforcement learning and a focus on model explainability.
Collapse
Affiliation(s)
- Alexandra-Maria Tautan
- AI Multimedia Lab, CAMPUS Research Institute, National University of Science and Technology Politehnica Bucharest, Romania; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Alexandra-Georgiana Andrei
- AI Multimedia Lab, CAMPUS Research Institute, National University of Science and Technology Politehnica Bucharest, Romania
| | - Carmelo Luca Smeralda
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Giampaolo Vatti
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Bogdan Ionescu
- AI Multimedia Lab, CAMPUS Research Institute, National University of Science and Technology Politehnica Bucharest, Romania
| |
Collapse
|
2
|
Lisgaras CP, de la Prida LM, Bertram E, Cunningham M, Henshall D, Liu AA, Gnatkovsky V, Balestrini S, de Curtis M, Galanopoulou AS, Jacobs J, Jefferys JGR, Mantegazza M, Reschke CR, Jiruska P. The role of electroencephalography in epilepsy research-From seizures to interictal activity and comorbidities. Epilepsia 2025. [PMID: 39913107 DOI: 10.1111/epi.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Electroencephalography (EEG) has been instrumental in epilepsy research for the past century, both for basic and translational studies. Its contributions have advanced our understanding of epilepsy, shedding light on the pathophysiology and functional organization of epileptic networks, and the mechanisms underlying seizures. Here we re-examine the historical significance, ongoing relevance, and future trajectories of EEG in epilepsy research. We describe traditional approaches to record brain electrical activity and discuss novel cutting-edge, large-scale techniques using micro-electrode arrays. Contemporary EEG studies explore brain potentials beyond the traditional Berger frequencies to uncover underexplored mechanisms operating at ultra-slow and high frequencies, which have proven valuable in understanding the principles of ictogenesis, epileptogenesis, and endogenous epileptogenicity. Integrating EEG with modern techniques such as optogenetics, chemogenetics, and imaging provides a more comprehensive understanding of epilepsy. EEG has become an integral element in a powerful suite of tools for capturing epileptic network dynamics across various temporal and spatial scales, ranging from rapid pathological synchronization to the long-term processes of epileptogenesis or seizure cycles. Advancements in EEG recording techniques parallel the application of sophisticated mathematical analyses and algorithms, significantly augmenting the information yield of EEG recordings. Beyond seizures and interictal activity, EEG has been instrumental in elucidating the mechanisms underlying epilepsy-related cognitive deficits and other comorbidities. Although EEG remains a cornerstone in epilepsy research, persistent challenges such as limited spatial resolution, artifacts, and the difficulty of long-term recording highlight the ongoing need for refinement. Despite these challenges, EEG continues to be a fundamental research tool, playing a central role in unraveling disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| | | | | | - Mark Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anli A Liu
- Langone Medical Center, New York University, New York, New York, USA
- Department of Neurology, School of Medicine, New York University, New York, New York, USA
- Neuroscience Institute, Langone Medical Center, New York University, New York, New York, USA
| | - Vadym Gnatkovsky
- Department of Epileptology, University Hospital Bonn (UKB), Bonn, Germany
| | - Simona Balestrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCSS, Florence, Italy
- University of Florence, Florence, Italy
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Julia Jacobs
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Alberta Health Services & University of Calgary, Calgary, Canada
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Massimo Mantegazza
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Cristina R Reschke
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Makarova J, Toledano R, Blázquez-Llorca L, Sánchez-Herráez E, Gil-Nagel A, DeFelipe J, Herreras O. Intracranial Voltage Profiles from Untangled Human Deep Sources Reveal Multisource Composition and Source Allocation Bias. J Neurosci 2025; 45:e0695242024. [PMID: 39481886 DOI: 10.1523/jneurosci.0695-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/21/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Intracranial potentials are used as functional biomarkers of neural networks. As potentials spread away from the source populations, they become mixed in the recordings. In humans, interindividual differences in the gyral architecture of the cortex pose an additional challenge, as functional areas vary in location and extent. We used source separation techniques to disentangle mixing potentials obtained by exploratory deep arrays implanted in epileptic patients of either sex to gain access to the number, location, relative contribution, and dynamics of coactive sources. The unique spatial profiles of separated generators made it possible to discern dozens of independent cortical areas for each patient, whose stability maintained even during seizure, enabling the follow up of activity for days and across states. Through matching these profiles to MRI, we associated each with limited portions of sulci and gyri and determined the local or remote origin of the corresponding sources. We also plotted source-specific 3D coverage across arrays. In average, individual recording sites are contributed to by 3-5 local and distant generators from areas up to several centimeters apart. During seizure, 13-85% of generators were involved, and a few appeared anew. Significant bias in location assignment using raw potentials is revealed, including numerous false positives when determining the site of origin of a seizure. This is not amended by bipolar montage, which introduce additional errors of its own. In this way, source disentangling reveals the multisource nature and far intracranial spread of potentials in humans, while efficiently addressing patient-specific anatomofunctional cortical divergence.
Collapse
Affiliation(s)
- Julia Makarova
- Translational Neuroscience, Cajal Institute - CSIC, Madrid 28002, Spain
| | | | - Lidia Blázquez-Llorca
- Translational Neuroscience, Cajal Institute - CSIC, Madrid 28002, Spain
- Laboratorio de Circuitos Corticales, Centro de Tecnología Biomédica Universidad Politécnica de Madrid (CTB-UPM), Madrid 28034, Spain
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Erika Sánchez-Herráez
- Translational Neuroscience, Cajal Institute - CSIC, Madrid 28002, Spain
- Hospital Ruber International, Madrid 28034, Spain
| | | | - Javier DeFelipe
- Translational Neuroscience, Cajal Institute - CSIC, Madrid 28002, Spain
- Laboratorio de Circuitos Corticales, Centro de Tecnología Biomédica Universidad Politécnica de Madrid (CTB-UPM), Madrid 28034, Spain
- CIBER de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Oscar Herreras
- Translational Neuroscience, Cajal Institute - CSIC, Madrid 28002, Spain
| |
Collapse
|
4
|
Brešar M, Andrzejak RG, Boškoski P. Reliable detection of directional couplings using cross-vector measures. CHAOS (WOODBURY, N.Y.) 2025; 35:013130. [PMID: 39792695 DOI: 10.1063/5.0238375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Detecting directional couplings from time series is crucial in understanding complex dynamical systems. Various approaches based on reconstructed state-spaces have been developed for this purpose, including a cross-distance vector measure, which we introduced in our recent work. Here, we devise two new cross-vector measures that utilize ranks and time series estimates instead of distances. We analyze various deterministic and stochastic dynamics to compare our cross-vector approach against some established state-space-based approaches. We demonstrate that all three cross-vector measures can identify the correct coupling direction for a broader range of couplings for all considered dynamics. Among the three cross-vector measures, the rank-based variant performs the best. Comparing this novel measure to an established rank-based measure confirms that it is more noise-robust and less affected by linear cross-correlation. To extend this comparison to real-world signals, we combine both measures with the method of surrogates and analyze a database of electroencephalographic (EEG) recordings from epilepsy patients. This database contains signals from brain areas where the patients' seizures were detected first and signals from brain areas that were not involved in the seizure onset. A better discrimination between these signal classes is obtained by the cross-rank vector measure. Additionally, this measure proves to be robust to non-stationarity, as its results remain nearly unchanged when the analysis is repeated for the subset of EEG signals that were identified as stationary in previous work. These findings suggest that the cross-vector approach can serve as a valuable tool for researchers analyzing complex time series and for clinical applications.
Collapse
Affiliation(s)
- Martin Brešar
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Ralph G Andrzejak
- Department of Engineering, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Pavle Boškoski
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Espinoso A, Leguia MG, Rummel C, Schindler K, Andrzejak RG. The part and the whole: how single nodes contribute to large-scale phase-locking in functional EEG networks. Clin Neurophysiol 2024; 168:178-192. [PMID: 39406673 DOI: 10.1016/j.clinph.2024.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 09/13/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE The application of signal analysis techniques to electroencephalographic (EEG) recordings from epilepsy patients shows that epilepsy involves not only altered neuronal synchronization but also the reorganization of functional EEG networks. This study aims to assess the large-scale phase-locking of such functional networks and how individual network nodes contribute to this collective dynamics. METHODS We analyze the EEG recorded before, during and after seizures from sixteen patients with pharmacoresistant focal-onset epilepsy. The data is filtered to low (4-30 Hz) and high (80-150 Hz) frequencies. We define the multivariate phase-locking measure and the univariate phase-locking contribution measure. Surrogate signals are used to estimate baseline results expected under the null hypothesis that the EEG is a correlated linear stochastic process. RESULTS On average, nodes from inside and outside the seizure onset zone (SOZ) increase and decrease, respectively, the large-scale phase-locking. This difference becomes most evident in a joint analysis of low and high frequencies. CONCLUSIONS Nodes inside and outside the SOZ play opposite roles for the large-scale phase-locking in functional EEG network in epilepsy patients. SIGNIFICANCE The application of the phase-locking contribution measure to EEG recordings from epilepsy patients can potentially help in localizing the SOZ.
Collapse
Affiliation(s)
- Anaïs Espinoso
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain.
| | - Marc G Leguia
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; European Campus Rottal-Inn, Technische Hochschule Deggendorf, Max-Breiherr-Strasse 32, D-84347 Pfarrkirchen, Germany
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph G Andrzejak
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona 08018, Catalonia, Spain
| |
Collapse
|
6
|
Djemili R, Djemili I. Nonlinear and chaos features over EMD/VMD decomposition methods for ictal EEG signals detection. Comput Methods Biomech Biomed Engin 2024; 27:2091-2110. [PMID: 37861376 DOI: 10.1080/10255842.2023.2271603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.
Collapse
Affiliation(s)
| | - Ilyes Djemili
- Lab. Electrotech, Université 20 Août, Skikda, Algeria
| |
Collapse
|
7
|
Zhu L, Wang W, Huang A, Ying N, Xu P, Zhang J. An efficient channel recurrent Criss-cross attention network for epileptic seizure prediction. Med Eng Phys 2024; 130:104213. [PMID: 39160021 DOI: 10.1016/j.medengphy.2024.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Epilepsy is a chronic disease caused by repeated abnormal discharge of neurons in the brain. Accurately predicting the onset of epilepsy can effectively improve the quality of life for patients with the condition. While there are many methods for detecting epilepsy, EEG is currently considered one of the most effective analytical tools due to the abundant information it provides about brain activity. The aim of this study is to explore potential time-frequency and channel features from multi-channel epileptic EEG signals and to develop a patient-specific seizure prediction network. In this paper, an epilepsy EEG signal classification algorithm called Channel Recurrent Criss-cross Attention Network (CRCANet) is proposed. Firstly, the spectrograms processed by the short-time fourier transform is input into a Convolutional Neural Network (CNN). Then, the spectrogram feature map obtained in the previous step is input into the channel attention module to establish correlations between channels. Subsequently, the feature diagram containing channel attention characteristics is input into the recurrent criss-cross attention module to enhance the information content of each pixel. Finally, two fully connected layers are used for classification. We validated the method on 13 patients in the public CHB-MIT scalp EEG dataset, achieving an average accuracy of 93.8 %, sensitivity of 94.3 %, and specificity of 93.5 %. The experimental results indicate that CRCANet can effectively capture the time-frequency and channel characteristics of EEG signals while improving training efficiency.
Collapse
Affiliation(s)
- Lei Zhu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China.
| | - Wentao Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China
| | - Aiai Huang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China
| | - Nanjiao Ying
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China
| | - Ping Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310000, PR China
| | - Jianhai Zhang
- School of Computer Science, Hangzhou Dianzi University, Hangzhou 310000, PR China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, PR China
| |
Collapse
|
8
|
Sadoun MSN, Laleg-Kirati TM. Seizure Onset Zone Localization in Focal Epilepsy using stereo-EEG: SCSA and Visibility Graph complementary features. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-7. [PMID: 40039514 DOI: 10.1109/embc53108.2024.10782524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Despite how limiting the symptoms of Epilepsy are in daily life, over a third of epileptic conditions are drug-resistant. These seizures stem from a specific region of the brain: the Seizure Onset Zone (SOZ). The available treatment options include surgical resection or neurostimulation of the SOZ and both options require its accurate localization. In this scope, we aim to analyse stereo-electroencephalograph (s-EEG) data from a feature engineering perspective to propose reliable computer-aided SOZ localization algorithms. This paper investigates Semi-Classical Signal Analysis (SCSA) and Visibility Graphs (VG) features and establishes their complementarity. The study considers brain -scale signals simulated through the Epileptor model using The Virtual Brain (TVB). Results have been undeniably satisfactory and a valid contribution to Seizure Onset Zone localization.Clinical relevance- The paper contributes to the design of frameworks for assisting medical experts in Seizure Onset Zone localization in focal epilepsy.
Collapse
|
9
|
Sun C, Xu C, Li H, Bo H, Ma L, Li H. A novel multi-feature fusion attention neural network for the recognition of epileptic EEG signals. Front Comput Neurosci 2024; 18:1393122. [PMID: 38962654 PMCID: PMC11219577 DOI: 10.3389/fncom.2024.1393122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Epilepsy is a common chronic brain disorder. Detecting epilepsy by observing electroencephalography (EEG) is the main method neurologists use, but this method is time-consuming. EEG signals are non-stationary, nonlinear, and often highly noisy, so it remains challenging to recognize epileptic EEG signals more accurately and automatically. This paper proposes a novel classification system of epileptic EEG signals for single-channel EEG based on the attention network that integrates time-frequency and nonlinear dynamic features. The proposed system has three novel modules. The first module constructs the Hilbert spectrum (HS) with high time-frequency resolution into a two-channel parallel convolutional network. The time-frequency features are fully extracted by complementing the high-dimensional features of the two branches. The second module constructs a grayscale recurrence plot (GRP) that contains more nonlinear dynamic features than traditional RP, fed into the residual-connected convolution module for effective learning of nonlinear dynamic features. The third module is the feature fusion module based on a self-attention mechanism to assign optimal weights to different types of features and further enhance the information extraction capability of the system. Therefore, the system is named HG-SANet. The results of several classification tasks on the Bonn EEG database and the Bern-Barcelona EEG database show that the HG-SANet can effectively capture the contribution degree of the extracted features from different domains, significantly enhance the expression ability of the model, and improve the accuracy of the recognition of epileptic EEG signals. The HG-SANet can improve the diagnosis and treatment efficiency of epilepsy and has broad application prospects in the fields of brain disease diagnosis.
Collapse
Affiliation(s)
- Congshan Sun
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Cong Xu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Hongwei Li
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Hongjian Bo
- Shenzhen Academy of Aerospace Technology, Shenzhen, China
| | - Lin Ma
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Haifeng Li
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
- Shenzhen Academy of Aerospace Technology, Shenzhen, China
| |
Collapse
|
10
|
Li B, Cao J. Classification of coma/brain-death EEG dataset based on one-dimensional convolutional neural network. Cogn Neurodyn 2024; 18:961-972. [PMID: 38826654 PMCID: PMC11143104 DOI: 10.1007/s11571-023-09942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 03/19/2023] Open
Abstract
Electroencephalography (EEG) evaluation is an important step in the clinical diagnosis of brain death during the standard clinical procedure. The processing of the brain-death EEG signals acquisition always carried out in the Intensive Care Unit (ICU). The electromagnetic environmental noise and prescribed sedative may erroneously suggest cerebral electrical activity, thus effecting the presentation of EEG signals. In order to accurately and efficiently assist physicians in making correct judgments, this paper presents a band-pass filter and threshold rejection-based EEG signal pre-processing method and an EEG-based coma/brain-death classification system associated with One Dimensional Convolutional Neural Network (1D-CNN) model to classify informative brain activity features from real-world recorded clinical EEG data. The experimental result shows that our method is well performed in classify the coma patients and brain-death patients with the classification accuracy of 99.71%, F1-score of 99.71% and recall score of 99.51%, which means the proposed model is well performed in the coma/brain-death EEG signals classification task. This paper provides a more straightforward and effective method for pre-processing and classifying EEG signals from coma/brain-death patients, and demonstrates the validity and reliability of the method. Considering the specificity of the condition and the complexity of the EEG acquisition environment, it presents an effective method for pre-processing real-time EEG signals in clinical diagnoses and aiding the physicians in their diagnosis, with significant implications for the choice of signal pre-processing methods in the construction of practical brain-death identification systems.
Collapse
Affiliation(s)
- Boning Li
- Graduate School of Engineering, Saitama Institute of Technology, Fusaiji 1690, Fukaya, Saitama 3690293 Japan
| | - Jianting Cao
- Graduate School of Engineering, Saitama Institute of Technology, Fusaiji 1690, Fukaya, Saitama 3690293 Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Nihonbashi 1-4-1, Chuo-ku, Tokyo 1030027 Japan
| |
Collapse
|
11
|
Lucas A, Revell A, Davis KA. Artificial intelligence in epilepsy - applications and pathways to the clinic. Nat Rev Neurol 2024; 20:319-336. [PMID: 38720105 DOI: 10.1038/s41582-024-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
Artificial intelligence (AI) is rapidly transforming health care, and its applications in epilepsy have increased exponentially over the past decade. Integration of AI into epilepsy management promises to revolutionize the diagnosis and treatment of this complex disorder. However, translation of AI into neurology clinical practice has not yet been successful, emphasizing the need to consider progress to date and assess challenges and limitations of AI. In this Review, we provide an overview of AI applications that have been developed in epilepsy using a variety of data modalities: neuroimaging, electroencephalography, electronic health records, medical devices and multimodal data integration. For each, we consider potential applications, including seizure detection and prediction, seizure lateralization, localization of the seizure-onset zone and assessment for surgical or neurostimulation interventions, and review the performance of AI tools developed to date. We also discuss methodological considerations and challenges that must be addressed to successfully integrate AI into clinical practice. Our goal is to provide an overview of the current state of the field and provide guidance for leveraging AI in future to improve management of epilepsy.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Revell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Jamil M, Aziz MZ, Yu X. Exploring the potential of pretrained CNNs and time-frequency methods for accurate epileptic EEG classification: a comparative study. Biomed Phys Eng Express 2024; 10:045023. [PMID: 38599183 DOI: 10.1088/2057-1976/ad3cde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Prompt diagnosis of epilepsy relies on accurate classification of automated electroencephalogram (EEG) signals. Several approaches have been developed to characterize epileptic EEG data; however, none of them have exploited time-frequency data to evaluate the effect of tweaking parameters in pretrained frameworks for EEG data classification. This study compares the performance of several pretrained convolutional neural networks (CNNs) namely, AlexNet, GoogLeNet, MobileNetV2, ResNet-18 and SqueezeNet for the localization of epilepsy EEG data using various time-frequency data representation algorithms. Continuous wavelet transform (CWT), empirical Fourier decomposition (EFD), empirical mode decomposition (EMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD) were exploited for the acquisition of 2D scalograms from 1D data. The research evaluates the effect of multiple factors, including noisy versus denoised scalograms, different optimizers, learning rates, single versus dual channels, model size, and computational time consumption. The benchmark Bern-Barcelona EEG dataset is used for testing purpose. Results obtained show that the combination of MobileNetV2, Continuous Wavelet Transform (CWT) and Adam optimizer at a learning rate of 10-4, coupled with dual-data channels, provides the best performance metrics. Specifically, these parameters result in optimal sensitivity, specificity, f1-score, and classification accuracy, with respective values of 96.06%, 96.15%, 96.08%, and 96.10%. To further corroborate the efficacy of opted pretrained models on exploited Signal Decomposition (SD) algorithms, the classifiers are also being simulated on Temple University database at pinnacle modeling composition. A similar pattern in the outcome readily validate the findings of our study and robustness of deep learning models on epilepsy EEG scalograms.The conclusions drawn emphasize the potential of pretrained CNN-based models to create a robust, automated system for diagnosing epileptiform. Furthermore, the study offers insights into the effectiveness of varying time-frequency techniques and classifier parameters for classifying epileptic EEG data.
Collapse
Affiliation(s)
- Mudasir Jamil
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| | - Muhammad Zulkifal Aziz
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| |
Collapse
|
13
|
Kim DH, Park JO, Lee DY, Choi YS. Multiscale distribution entropy analysis of short epileptic EEG signals. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5556-5576. [PMID: 38872548 DOI: 10.3934/mbe.2024245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This paper proposes an information-theoretic measure for discriminating epileptic patterns in short-term electroencephalogram (EEG) recordings. Considering nonlinearity and nonstationarity in EEG signals, quantifying complexity has been preferred. To decipher abnormal epileptic EEGs, i.e., ictal and interictal EEGs, via short-term EEG recordings, a distribution entropy (DE) is used, motivated by its robustness on the signal length. In addition, to reflect the dynamic complexity inherent in EEGs, a multiscale entropy analysis is incorporated. Here, two multiscale distribution entropy (MDE) methods using the coarse-graining and moving-average procedures are presented. Using two popular epileptic EEG datasets, i.e., the Bonn and the Bern-Barcelona datasets, the performance of the proposed MDEs is verified. Experimental results show that the proposed MDEs are robust to the length of EEGs, thus reflecting complexity over multiple time scales. In addition, the proposed MDEs are consistent irrespective of the selection of short-term EEGs from the entire EEG recording. By evaluating the Man-Whitney U test and classification performance, the proposed MDEs can better discriminate epileptic EEGs than the existing methods. Moreover, the proposed MDE with the moving-average procedure performs marginally better than one with the coarse-graining. The experimental results suggest that the proposed MDEs are applicable to practical seizure detection applications.
Collapse
Affiliation(s)
- Dae Hyeon Kim
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Jin-Oh Park
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Dae-Young Lee
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Young-Seok Choi
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| |
Collapse
|
14
|
Karimi-Rouzbahani H, McGonigal A. Generalisability of epileptiform patterns across time and patients. Sci Rep 2024; 14:6293. [PMID: 38491096 PMCID: PMC10942983 DOI: 10.1038/s41598-024-56990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The complexity of localising the epileptogenic zone (EZ) contributes to surgical resection failures in achieving seizure freedom. The distinct patterns of epileptiform activity during interictal and ictal phases, varying across patients, often lead to suboptimal localisation using electroencephalography (EEG) features. We posed two key questions: whether neural signals reflecting epileptogenicity generalise from interictal to ictal time windows within each patient, and whether epileptiform patterns generalise across patients. Utilising an intracranial EEG dataset from 55 patients, we extracted a large battery of simple to complex features from stereo-EEG (SEEG) and electrocorticographic (ECoG) neural signals during interictal and ictal windows. Our features (n = 34) quantified many aspects of the signals including statistical moments, complexities, frequency-domain and cross-channel network attributes. Decision tree classifiers were then trained and tested on distinct time windows and patients to evaluate the generalisability of epileptogenic patterns across time and patients, respectively. Evidence strongly supported generalisability from interictal to ictal time windows across patients, particularly in signal power and high-frequency network-based features. Consistent patterns of epileptogenicity were observed across time windows within most patients, and signal features of epileptogenic regions generalised across patients, with higher generalisability in the ictal window. Signal complexity features were particularly contributory in cross-patient generalisation across patients. These findings offer insights into generalisable features of epileptic neural activity across time and patients, with implications for future automated approaches to supplement other EZ localisation methods.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia.
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia.
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia.
| | - Aileen McGonigal
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
15
|
Holguin-Garcia SA, Guevara-Navarro E, Daza-Chica AE, Patiño-Claro MA, Arteaga-Arteaga HB, Ruz GA, Tabares-Soto R, Bravo-Ortiz MA. A comparative study of CNN-capsule-net, CNN-transformer encoder, and Traditional machine learning algorithms to classify epileptic seizure. BMC Med Inform Decis Mak 2024; 24:60. [PMID: 38429718 PMCID: PMC10908140 DOI: 10.1186/s12911-024-02460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
INTRODUCTION Epilepsy is a disease characterized by an excessive discharge in neurons generally provoked without any external stimulus, known as convulsions. About 2 million people are diagnosed each year in the world. This process is carried out by a neurological doctor using an electroencephalogram (EEG), which is lengthy. METHOD To optimize these processes and make them more efficient, we have resorted to innovative artificial intelligence methods essential in classifying EEG signals. For this, comparing traditional models, such as machine learning or deep learning, with cutting-edge models, in this case, using Capsule-Net architectures and Transformer Encoder, has a crucial role in finding the most accurate model and helping the doctor to have a faster diagnosis. RESULT In this paper, a comparison was made between different models for binary and multiclass classification of the epileptic seizure detection database, achieving a binary accuracy of 99.92% with the Capsule-Net model and a multiclass accuracy with the Transformer Encoder model of 87.30%. CONCLUSION Artificial intelligence is essential in diagnosing pathology. The comparison between models is helpful as it helps to discard those that are not efficient. State-of-the-art models overshadow conventional models, but data processing also plays an essential role in evaluating the higher accuracy of the models.
Collapse
Affiliation(s)
| | - Ernesto Guevara-Navarro
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
| | - Alvaro Eduardo Daza-Chica
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
| | - Maria Alejandra Patiño-Claro
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
| | - Harold Brayan Arteaga-Arteaga
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
| | - Gonzalo A Ruz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, 7941169, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile
- Data Observatory Foundation, Santiago, 7510277, Chile
| | - Reinel Tabares-Soto
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia
- Departamento de Sistemas e Informática, Universidad de Caldas, Manizales, 170004, Caldas, Colombia
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, 7941169, Chile
| | - Mario Alejandro Bravo-Ortiz
- Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales, 170001, Caldas, Colombia.
- Centro de Bioinformática y Biología Computacional (BIOS), Manizales, 170001, Colombia.
| |
Collapse
|
16
|
Rani TJ, Kavitha D. Effective Epileptic Seizure Detection Using Enhanced Salp Swarm Algorithm-based Long Short-Term Memory Network. IETE JOURNAL OF RESEARCH 2024; 70:1538-1555. [DOI: 10.1080/03772063.2022.2153090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- T. Jhansi Rani
- Department of Computer Science & Engineering, Jawaharlal Nehru Technological University, Anantapur, Andhra Pradesh, India
| | - D. Kavitha
- Department of Computer Science & Engineering, G. Pulla Reddy Engineering College (Autonomous), Kurnool, Andhra Pradesh, India
| |
Collapse
|
17
|
Kouka M, Cuesta-Frau D, Moltó-Gallego V. Slope Entropy Characterisation: An Asymmetric Approach to Threshold Parameters Role Analysis. ENTROPY (BASEL, SWITZERLAND) 2024; 26:82. [PMID: 38248207 PMCID: PMC10814979 DOI: 10.3390/e26010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Slope Entropy (SlpEn) is a novel method recently proposed in the field of time series entropy estimation. In addition to the well-known embedded dimension parameter, m, used in other methods, it applies two additional thresholds, denoted as δ and γ, to derive a symbolic representation of a data subsequence. The original paper introducing SlpEn provided some guidelines for recommended specific values of these two parameters, which have been successfully followed in subsequent studies. However, a deeper understanding of the role of these thresholds is necessary to explore the potential for further SlpEn optimisations. Some works have already addressed the role of δ, but in this paper, we extend this investigation to include the role of γ and explore the impact of using an asymmetric scheme to select threshold values. We conduct a comparative analysis between the standard SlpEn method as initially proposed and an optimised version obtained through a grid search to maximise signal classification performance based on SlpEn. The results confirm that the optimised version achieves higher time series classification accuracy, albeit at the cost of significantly increased computational complexity.
Collapse
Affiliation(s)
- Mahdy Kouka
- Department of System Informatics and Computers, Universitat Politècnica de València, 03801 Alcoy, Spain; (M.K.); (V.M.-G.)
| | - David Cuesta-Frau
- Department of System Informatics and Computers, Universitat Politècnica de València, 03801 Alcoy, Spain; (M.K.); (V.M.-G.)
- Technological Institute of Informatics, Universitat Politècnica de València, 03801 Alcoy, Spain
| | - Vicent Moltó-Gallego
- Department of System Informatics and Computers, Universitat Politècnica de València, 03801 Alcoy, Spain; (M.K.); (V.M.-G.)
| |
Collapse
|
18
|
Rostaghi M, Rostaghi S, Humeau-Heurtier A, Rajji TK, Azami H. NLDyn - An open source MATLAB toolbox for the univariate and multivariate nonlinear dynamical analysis of physiological data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107941. [PMID: 38006684 DOI: 10.1016/j.cmpb.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND OBJECTIVE We present NLDyn, an open-source MATLAB toolbox tailored for in-depth analysis of nonlinear dynamics in biomedical signals. Our objective is to offer a user-friendly yet comprehensive platform for researchers to explore the intricacies of time series data. METHODS NLDyn integrates approximately 80 distinct methods, encompassing both univariate and multivariate nonlinear dynamics, setting it apart from existing solutions. This toolbox combines state-of-the-art nonlinear dynamical techniques with advanced multivariate entropy methods, providing users with powerful analytical capabilities. NLDyn enables analyses with or without a sliding window, and users can easily access and customize default parameters. RESULTS NLDyn generates results that are both exportable and visually informative, facilitating seamless integration into research and presentations. Its ongoing development ensures it remains at the forefront of nonlinear dynamics analysis. CONCLUSIONS NLDyn is a valuable resource for researchers in the biomedical field, offering an intuitive interface and a wide array of nonlinear analysis tools. Its integration of advanced techniques empowers users to gain deeper insights from their data. As we continually refine and expand NLDyn's capabilities, we envision it becoming an indispensable tool for the exploration of complex dynamics in biomedical signals.
Collapse
Affiliation(s)
- Mostafa Rostaghi
- Modal Analysis Research Laboratory, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Sadegh Rostaghi
- Department of Mechanical Engineering, Naghshejahan Higher Education Institute, Isfahan, Iran
| | | | - Tarek K Rajji
- Centre for Addiction and Mental Health, University of Toronto, Toronto Dementia Research Alliance, Toronto, ON, Canada
| | - Hamed Azami
- Centre for Addiction and Mental Health, University of Toronto, Toronto Dementia Research Alliance, Toronto, ON, Canada.
| |
Collapse
|
19
|
Lee A, Lee J, Leung V, Nurmikko A. Versatile On-Chip Programming of Circuit Hardware for Wearable and Implantable Biomedical Microdevices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2306111. [PMID: 37904645 PMCID: PMC10754128 DOI: 10.1002/advs.202306111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Indexed: 11/01/2023]
Abstract
Wearable and implantable microscale electronic sensors have been developed for a range of biomedical applications. The sensors, typically millimeter size silicon microchips, are sought for multiple sensing functions but are severely constrained by size and power. To address these challenges, a hardware programmable application-specific integrated circuit design is proposed and post-process methodology is exemplified by the design of battery-less wireless microchips. Specifically, both mixed-signal and radio frequency circuits are designed by incorporating metal fuses and anti-fuses on the top metal layer to enable programmability of any number of features in hardware of the system-on-chip (SoC) designs. This is accomplished in post-foundry editing by combining laser ablation and focused ion beam processing. The programmability provided by the technique can significantly accelerate the SoC chip development process by enabling the exploration of multiple internal circuit parameters without the requirement of additional programming pads or extra power consumption. As examples, experimental results are described for sub-millimeter size complementary metal-oxide-semiconductor microchips being developed for wireless electroencephalogram sensors and as implantable microstimulators for neural interfaces. The editing technique can be broadly applicable for miniaturized biomedical wearables and implants, opening up new possibilities for their expedited development and adoption in the field of smart healthcare.
Collapse
Affiliation(s)
- Ah‐Hyoung Lee
- School of EngineeringBrown UniversityProvidenceRI02912USA
| | - Jihun Lee
- School of EngineeringBrown UniversityProvidenceRI02912USA
| | - Vincent Leung
- Electrical and Computer EngineeringBaylor UniversityWacoTX76798USA
| | - Arto Nurmikko
- School of EngineeringBrown UniversityProvidenceRI02912USA
- Carney Institute for Brain ScienceBrown UniversityProvidenceRI02912USA
| |
Collapse
|
20
|
Abreu M, Carmo AS, Peralta AR, Sá F, Plácido da Silva H, Bentes C, Fred AL. PreEpiSeizures: description and outcomes of physiological data acquisition using wearable devices during video-EEG monitoring in people with epilepsy. Front Physiol 2023; 14:1248899. [PMID: 37881691 PMCID: PMC10597694 DOI: 10.3389/fphys.2023.1248899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
The PreEpiSeizures project was created to better understand epilepsy and seizures through wearable technologies. The motivation was to capture physiological information related to epileptic seizures, besides Electroencephalography (EEG) during video-EEG monitorings. If other physiological signals have reliable information of epileptic seizures, unobtrusive wearable technology could be used to monitor epilepsy in daily life. The development of wearable solutions for epilepsy is limited by the nonexistence of datasets which could validate these solutions. Three different form factors were developed and deployed, and the signal quality was assessed for all acquired biosignals. The wearable data acquisition was performed during the video-EEG of patients with epilepsy. The results achieved so far include 59 patients from 2 hospitals totaling 2,721 h of wearable data and 348 seizures. Besides the wearable data, the Electrocardiogram of the hospital is also useable, totalling 5,838 h of hospital data. The quality ECG signals collected with the proposed wearable is equated with the hospital system, and all other biosignals also achieved state-of-the-art quality. During the data acquisition, 18 challenges were identified, and are presented alongside their possible solutions. Though this is an ongoing work, there were many lessons learned which could help to predict possible problems in wearable data collections and also contribute to the epilepsy community with new physiological information. This work contributes with original wearable data and results relevant to epilepsy research, and discusses relevant challenges that impact wearable health monitoring.
Collapse
Affiliation(s)
- Mariana Abreu
- Instituto de Telecomunicações, Lisboa, Portugal
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Sofia Carmo
- Instituto de Telecomunicações, Lisboa, Portugal
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Rita Peralta
- Lab EEG-Sono, Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Francisca Sá
- Departamento Neurologia, Centro Hospitalar Lisboa Ocidental, Hospital Egas Moniz, Lisboa, Portugal
| | - Hugo Plácido da Silva
- Instituto de Telecomunicações, Lisboa, Portugal
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Lisbon Unit for Learning and Intelligent Systems (LUMLIS), A Unit of the European Laboratory for Learning and Intelligent Systems (ELLIS), Lisboa, Portugal
| | - Carla Bentes
- Lab EEG-Sono, Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Ana Luísa Fred
- Instituto de Telecomunicações, Lisboa, Portugal
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Andrzejak RG, Espinoso A, García-Portugués E, Pewsey A, Epifanio J, Leguia MG, Schindler K. High expectations on phase locking: Better quantifying the concentration of circular data. CHAOS (WOODBURY, N.Y.) 2023; 33:091106. [PMID: 37756609 DOI: 10.1063/5.0166468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The degree to which unimodal circular data are concentrated around the mean direction can be quantified using the mean resultant length, a measure known under many alternative names, such as the phase locking value or the Kuramoto order parameter. For maximal concentration, achieved when all of the data take the same value, the mean resultant length attains its upper bound of one. However, for a random sample drawn from the circular uniform distribution, the expected value of the mean resultant length achieves its lower bound of zero only as the sample size tends to infinity. Moreover, as the expected value of the mean resultant length depends on the sample size, bias is induced when comparing the mean resultant lengths of samples of different sizes. In order to ameliorate this problem, here, we introduce a re-normalized version of the mean resultant length. Regardless of the sample size, the re-normalized measure has an expected value that is essentially zero for a random sample from the circular uniform distribution, takes intermediate values for partially concentrated unimodal data, and attains its upper bound of one for maximal concentration. The re-normalized measure retains the simplicity of the original mean resultant length and is, therefore, easy to implement and compute. We illustrate the relevance and effectiveness of the proposed re-normalized measure for mathematical models and electroencephalographic recordings of an epileptic seizure.
Collapse
Affiliation(s)
- Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Anaïs Espinoso
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Catalonia, Spain
| | - Eduardo García-Portugués
- Department of Statistics, Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Arthur Pewsey
- Mathematics Department, Escuela Politécnica, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | - Jacopo Epifanio
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Marc G Leguia
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Kaspar Schindler
- Sleep Wake Epilepsy Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
22
|
Sadoun MSN, Ur Rahman MM, Al-Naffouri T, Laleg-Kirati TM. EEG Epileptic Data Classification Using the Schrodinger Operator's Spectrum. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083329 DOI: 10.1109/embc40787.2023.10340881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Epilepsy is a common brain disorder characterized by recurrent, unprovoked seizures which affects over 65 million people. Visual inspection of Electroencephalograms (EEG) is common for diagnosis; however, it requires time and expertise. Therefore, an accurate computer-aided epileptic seizure diagnosis system would be valuable. A new research tendency when tackling epileptic seizure detection tends towards minimizing human manual intervention by designing frameworks with autonomous feature engineering. In this optic, this paper proposes a new approach for EEG epileptic data classification. Features derived from the Semi-Classical Signal Analysis (SCSA) method, a quantum-inspired signal processing method well-suited for the characterization of pulse-shaped physiological signals, are proposed. In addition nonlinear dynamical features that proved efficient in characterizing nonlinear dynamics of neural activity have been extracted. Moreover, hyperparameters' optimization, correlation analysis and feature selection have been performed. The selected features are fed into five different machine learning classifiers. The performance of the proposed approach has been analyzed using Bonn university database. The results show that all classifiers yield a performance accuracy of 93% and above.Clinical relevance- The paper contributes to the design of methods and algorithms to build reliable software solutions to assist medical experts and reduce epilepsy disease's diagnosis time and errors.
Collapse
|
23
|
Zhao X, Zhao Q, Tanaka T, Solé-Casals J, Zhou G, Mitsuhashi T, Sugano H, Yoshida N, Cao J. Classification of the Epileptic Seizure Onset Zone Based on Partial Annotation. Cogn Neurodyn 2023; 17:703-713. [PMID: 37265654 PMCID: PMC10229525 DOI: 10.1007/s11571-022-09857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Epilepsy is a chronic disorder caused by excessive electrical discharges. Currently, clinical experts identify the seizure onset zone (SOZ) channel through visual judgment based on long-time intracranial electroencephalogram (iEEG), which is a very time-consuming, difficult and experience-based task. Therefore, there is a need for high-accuracy diagnostic aids to reduce the workload of clinical experts. In this article, we propose a method in which, the iEEG is split into the 20-s segment and for each patient, we ask clinical experts to label a part of the data, which is used to train a model and classify the remaining iEEG data. In recent years, machine learning methods have been successfully applied to solve some medical problems. Filtering, entropy and short-time Fourier transform (STFT) are used for extracting features. We compare them to wavelet transform (WT), empirical mode decomposition (EMD) and other traditional methods with the aim of obtaining the best possible discriminating features. Finally, we look for their medical interpretation, which is important for clinical experts. We achieve high-performance results for SOZ and non-SOZ data classification by using the labeled iEEG data and support vector machine (SVM), fully connected neural network (FCNN) and convolutional neural network (CNN) as classification models. In addition, we introduce the positive unlabeled (PU) learning to further reduce the workload of clinical experts. By using PU learning, we can learn a binary classifier with a small amount of labeled data and a large amount of unlabeled data. This can greatly reduce the amount and difficulty of annotation work by clinical experts. All together, we show that using 105 minutes of labeled data we achieve a classification result of 91.46% on average for multiple patients.
Collapse
Affiliation(s)
- Xuyang Zhao
- Department of Electrical Engineering and Computer Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Tensor Learning Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Qibin Zhao
- Tensor Learning Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Toshihisa Tanaka
- Department of Electrical Engineering and Computer Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Tensor Learning Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, Department of Engineering, University of Vic - Central University of Catalonia, Barcelona, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Guoxu Zhou
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | | | | | | | - Jianting Cao
- Tensor Learning Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Graduate School of Engineering, Saitama Institute of Technology, Fukaya, Japan
| |
Collapse
|
24
|
Liu X, Ding X, Liu J, Nie W, Yuan Q. Automatic focal EEG identification based on deep reinforcement learning. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
25
|
Effective Epileptic Seizure Detection by Classifying Focal and Non-focal EEG Signals using Human Learning Optimization-based Hidden Markov Model. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
26
|
Al-hajjar ALN, Al-Qurabat AKM. An overview of machine learning methods in enabling IoMT-based epileptic seizure detection. THE JOURNAL OF SUPERCOMPUTING 2023; 79:1-48. [PMID: 37359338 PMCID: PMC10123593 DOI: 10.1007/s11227-023-05299-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
The healthcare industry is rapidly automating, in large part because of the Internet of Things (IoT). The sector of the IoT devoted to medical research is sometimes called the Internet of Medical Things (IoMT). Data collecting and processing are the fundamental components of all IoMT applications. Machine learning (ML) algorithms must be included into IoMT immediately due to the vast quantity of data involved in healthcare and the value that precise forecasts have. In today's world, together, IoMT, cloud services, and ML techniques have become effective tools for solving many problems in the healthcare sector, such as epileptic seizure monitoring and detection. One of the biggest hazards to people's lives is epilepsy, a lethal neurological condition that has become a global issue. To prevent the deaths of thousands of epileptic patients each year, there is a critical necessity for an effective method for detecting epileptic seizures at their earliest stage. Numerous medical procedures, including epileptic monitoring, diagnosis, and other procedures, may be carried out remotely with the use of IoMT, which will reduce healthcare expenses and improve services. This article seeks to act as both a collection and a review of the different cutting-edge ML applications for epilepsy detection that are presently being combined with IoMT.
Collapse
Affiliation(s)
| | - Ali Kadhum M. Al-Qurabat
- Department of Computer Science, College of Science for Women, University of Babylon, Babylon, Iraq
| |
Collapse
|
27
|
Epileptic seizure focus detection from interictal electroencephalogram: a survey. Cogn Neurodyn 2023; 17:1-23. [PMID: 36704629 PMCID: PMC9871145 DOI: 10.1007/s11571-022-09816-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Electroencephalogram (EEG) is one of most effective clinical diagnosis modalities for the localization of epileptic focus. Most current AI solutions use this modality to analyze the EEG signals in an automated manner to identify the epileptic seizure focus. To develop AI system for identifying the epileptic focus, there are many recently-published AI solutions based on biomarkers or statistic features that utilize interictal EEGs. In this review, we survey these solutions and find that they can be divided into three main categories: (i) those that use of biomarkers in EEG signals, including high-frequency oscillation, phase-amplitude coupling, and interictal epileptiform discharges, (ii) others that utilize feature-extraction methods, and (iii) solutions based upon neural networks (an end-to-end approach). We provide a detailed description of seizure focus with clinical diagnosis methods, a summary of the public datasets that seek to reduce the research gap in epilepsy, recent novel performance evaluation criteria used to evaluate the AI systems, and guidelines on when and how to use them. This review also suggests a number of future research challenges that must be overcome in order to design more efficient computer-aided solutions to epilepsy focus detection.
Collapse
|
28
|
Nafea MS, Ismail ZH. Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals-A Systematic Literature Review. Bioengineering (Basel) 2022; 9:781. [PMID: 36550987 PMCID: PMC9774931 DOI: 10.3390/bioengineering9120781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
Electroencephalography (EEG) is a complicated, non-stationary signal that requires extensive preprocessing and feature extraction approaches to be accurately analyzed. In recent times, Deep learning (DL) has shown great promise in exploiting the characteristics of EEG signals as it can learn relevant features from raw data autonomously. Although studies involving DL have become more common in the last two years, the topic of whether DL truly delivers advantages over conventional Machine learning (ML) methodologies remains unsettled. This study aims to present a detailed overview of the main challenges in the field of seizure detection, prediction, and classification utilizing EEG data, and the approaches taken to solve them using ML and DL methods. A systematic review was conducted surveying peer-reviewed publications published between 2017 and 16 July 2022 using two scientific databases (Web of Science and Scopus) totaling 6822 references after discarding duplicate publications. Whereas 2262 articles were screened based on the title, abstract, and keywords, only 214 were eligible for full-text assessment. A total of 91 papers have been included in this survey after meeting the eligible inclusion and exclusion criteria. The most significant findings from the review are summarized, and several important concepts involving ML and DL for seizure detection, prediction, and classification are discussed in further depth. This review aims to learn more about the different approaches for identifying different types and stages of epileptic seizures, which may then be employed to enhance the lives of epileptic patients in the future, as well as aid experts in the field.
Collapse
Affiliation(s)
- Mohamed Sami Nafea
- Computer Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Cairo 2033, Egypt
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Zool Hilmi Ismail
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
29
|
Cavazza J, Ahmed W, Volpi R, Morerio P, Bossi F, Willemse C, Wykowska A, Murino V. Understanding action concepts from videos and brain activity through subjects' consensus. Sci Rep 2022; 12:19073. [PMID: 36351956 PMCID: PMC9646846 DOI: 10.1038/s41598-022-23067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
In this paper, we investigate brain activity associated with complex visual tasks, showing that electroencephalography (EEG) data can help computer vision in reliably recognizing actions from video footage that is used to stimulate human observers. Notably, we consider not only typical "explicit" video action benchmarks, but also more complex data sequences in which action concepts are only referred to, implicitly. To this end, we consider a challenging action recognition benchmark dataset-Moments in Time-whose video sequences do not explicitly visualize actions, but only implicitly refer to them (e.g., fireworks in the sky as an extreme example of "flying"). We employ such videos as stimuli and involve a large sample of subjects to collect a high-definition, multi-modal EEG and video data, designed for understanding action concepts. We discover an agreement among brain activities of different subjects stimulated by the same video footage. We name it as subjects consensus, and we design a computational pipeline to transfer knowledge from EEG to video, sharply boosting the recognition performance.
Collapse
Affiliation(s)
- Jacopo Cavazza
- grid.25786.3e0000 0004 1764 2907Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy
| | - Waqar Ahmed
- grid.25786.3e0000 0004 1764 2907Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy
| | - Riccardo Volpi
- grid.25786.3e0000 0004 1764 2907Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy ,Naver Labs Europe, 6 Chemin de Maupertuis, Meylan, 38240 Grenoble, France
| | - Pietro Morerio
- grid.25786.3e0000 0004 1764 2907Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy
| | - Francesco Bossi
- grid.462365.00000 0004 1790 9464IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy ,grid.25786.3e0000 0004 1764 2907Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy
| | - Cesco Willemse
- grid.25786.3e0000 0004 1764 2907Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy
| | - Agnieszka Wykowska
- grid.25786.3e0000 0004 1764 2907Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy
| | - Vittorio Murino
- grid.25786.3e0000 0004 1764 2907Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152 Genova, Italy ,grid.5611.30000 0004 1763 1124Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
30
|
Azami H, Sanei S, Rajji TK. Ensemble entropy: A low bias approach for data analysis. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Kouka M, Cuesta-Frau D. Slope Entropy Characterisation: The Role of the δ Parameter. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1456. [PMID: 37420476 DOI: 10.3390/e24101456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 07/09/2023]
Abstract
Many time series entropy calculation methods have been proposed in the last few years. They are mainly used as numerical features for signal classification in any scientific field where data series are involved. We recently proposed a new method, Slope Entropy (SlpEn), based on the relative frequency of differences between consecutive samples of a time series, thresholded using two input parameters, γ and δ. In principle, δ was proposed to account for differences in the vicinity of the 0 region (namely, ties) and, therefore, was usually set at small values such as 0.001. However, there is no study that really quantifies the role of this parameter using this default or other configurations, despite the good SlpEn results so far. The present paper addresses this issue, removing δ from the SlpEn calculation to assess its real influence on classification performance, or optimising its value by means of a grid search in order to find out if other values beyond the 0.001 value provide significant time series classification accuracy gains. Although the inclusion of this parameter does improve classification accuracy according to experimental results, gains of 5% at most probably do not support the additional effort required. Therefore, SlpEn simplification could be seen as a real alternative.
Collapse
Affiliation(s)
- Mahdy Kouka
- Department of System Informatics and Computers, Universitat Politècnica de València, 03801 Alcoy, Spain
| | - David Cuesta-Frau
- Technological Institute of Informatics, Universitat Politècnica de València, 03801 Alcoy, Spain
| |
Collapse
|
32
|
Wang Y, Yang Y, Cao G, Guo J, Wei P, Feng T, Dai Y, Huang J, Kang G, Zhao G. SEEG-Net: An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Comput Biol Med 2022; 148:105703. [PMID: 35791972 DOI: 10.1016/j.compbiomed.2022.105703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Precise preoperative evaluation of drug-resistant epilepsy (DRE) requires accurate analysis of invasive stereoelectroencephalography (SEEG). With the tremendous breakthrough of Artificial intelligence (AI), previous studies can help clinical experts to identify pathological activities automatically. However, they still face limitations when applied in real-world clinical DRE scenarios, such as sample imbalance, cross-subject domain shift, and poor interpretability. Our objective is to propose a model that can address the above problems and realizes high-sensitivity SEEG pathological activity detection based on two real clinical datasets. METHODS Our proposed innovative and effective SEEG-Net introduces a multiscale convolutional neural network (MSCNN) to increase the receptive field of the model, and to learn SEEG multiple frequency domain features, local and global features. Moreover, we designed a novel focal domain generalization loss (FDG-loss) function to enhance the target sample weight and to learn domain consistency features. Furthermore, to enhance the interpretability and flexibility of SEEG-Net, we explain SEEG-Net from multiple perspectives, such as significantly different features, interpretable models, and model learning process interpretation by Grad-CAM++. RESULTS The performance of our proposed method is verified on a public benchmark multicenter SEEG dataset and a private clinical SEEG dataset for a robust comparison. The experimental results demonstrate that the SEEG-Net model achieves the highest sensitivity and is state-of-the-art on cross-subject (for different patients) evaluation, and well deal with the known problems. Besides, we provide an SEEG processing and database construction flow, by maintaining consistency with the real-world clinical scenarios. SIGNIFICANCE According to the results, SEEG-Net is constructed to increase the sensitivity of SEEG pathological activity detection. Simultaneously, we settled certain problems about AI assistance in clinical DRE, built a bridge between AI algorithm application and clinical practice.
Collapse
Affiliation(s)
- Yiping Wang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Gongpeng Cao
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China
| | - Jinjie Guo
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China
| | - Penghu Wei
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tao Feng
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yang Dai
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jinguo Huang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China
| | - Guixia Kang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
33
|
Mirchi N, Warsi NM, Zhang F, Wong SM, Suresh H, Mithani K, Erdman L, Ibrahim GM. Decoding Intracranial EEG With Machine Learning: A Systematic Review. Front Hum Neurosci 2022; 16:913777. [PMID: 35832872 PMCID: PMC9271576 DOI: 10.3389/fnhum.2022.913777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in intracranial electroencephalography (iEEG) and neurophysiology have enabled the study of previously inaccessible brain regions with high fidelity temporal and spatial resolution. Studies of iEEG have revealed a rich neural code subserving healthy brain function and which fails in disease states. Machine learning (ML), a form of artificial intelligence, is a modern tool that may be able to better decode complex neural signals and enhance interpretation of these data. To date, a number of publications have applied ML to iEEG, but clinician awareness of these techniques and their relevance to neurosurgery, has been limited. The present work presents a review of existing applications of ML techniques in iEEG data, discusses the relative merits and limitations of the various approaches, and examines potential avenues for clinical translation in neurosurgery. One-hundred-seven articles examining artificial intelligence applications to iEEG were identified from 3 databases. Clinical applications of ML from these articles were categorized into 4 domains: i) seizure analysis, ii) motor tasks, iii) cognitive assessment, and iv) sleep staging. The review revealed that supervised algorithms were most commonly used across studies and often leveraged publicly available timeseries datasets. We conclude with recommendations for future work and potential clinical applications.
Collapse
Affiliation(s)
- Nykan Mirchi
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nebras M. Warsi
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Frederick Zhang
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Simeon M. Wong
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Karim Mithani
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Lauren Erdman
- Vector Institute for Artificial Intelligence, MaRS Centre, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Hospital for Sick Children, Toronto, ON, Canada
| | - George M. Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Ahmad I, Wang X, Zhu M, Wang C, Pi Y, Khan JA, Khan S, Samuel OW, Chen S, Li G. EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6486570. [PMID: 35755757 PMCID: PMC9232335 DOI: 10.1155/2022/6486570] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG's noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG's low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.
Collapse
Affiliation(s)
- Ijaz Ahmad
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Mingxing Zhu
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Cheng Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Yao Pi
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Javed Ali Khan
- Department of Software Engineering, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Siyab Khan
- Institute of Computer Science and Information Technology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Oluwarotimi Williams Samuel
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Shixiong Chen
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
35
|
Application of Deep Learning and WT-SST in Localization of Epileptogenic Zone Using Epileptic EEG Signals. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Focal and non-focal Electroencephalogram (EEG) signals have proved to be effective techniques for identifying areas in the brain that are affected by epileptic seizures, known as the epileptogenic zones. The detection of the location of focal EEG signals and the time of seizure occurrence are vital information that help doctors treat focal epileptic seizures using a surgical method. This paper proposed a computer-aided detection (CAD) system for detecting and classifying focal and non-focal EEG signals as the manual process is time-consuming, prone to error, and tedious. The proposed technique employs time-frequency features, statistical, and nonlinear approaches to form a robust features extraction technique. Four detection and classification techniques for focal and non-focal EEG signals were proposed. (1). Combined hybrid features with Support Vector Machine (Hybrid-SVM) (2). Discrete Wavelet Transform with Deep Learning Network (DWT-DNN) (3). Combined hybrid features with DNN (Hybrid-DNN) as an optimized DNN model. Lastly, (4). A newly proposed technique using Wavelet Synchrosqueezing Transform-Deep Convolutional Neural Network (WTSST-DCNN). Prior to feeding the features to classifiers, statistical analyses, including t-tests, were deployed to obtain relevant and significant features at each approach. The proposed feature extraction technique and classification proved effective and suitable for smart Internet of Medical Things (IoMT) devices as performance parameters of accuracy, sensitivity, and specificity are higher than recently related works with a value of 99.7%, 99.5%, and 99.7% respectively.
Collapse
|
36
|
Nayak G, Padhy N, Mishra TK. 2D-DOST for seizure identification from brain MRI during pregnancy using KRVFL. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Xin Q, Hu S, Liu S, Zhao L, Zhang YD. An Attention-based Wavelet Convolution Neural Network for Epilepsy EEG Classification. IEEE Trans Neural Syst Rehabil Eng 2022; 30:957-966. [PMID: 35404819 DOI: 10.1109/tnsre.2022.3166181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a kind of non-invasive, low-cost, and readily available brain examination, EEG has attached significance to the means of clinical diagnosis of epilepsy. However, the reading of long-term EEG records has brought a heavy burden to neurologists and experts. Therefore, automatic EEG classification for epileptic patients plays an essential role in epilepsy diagnosis and treatment. This paper proposes an Attention Mechanism-based Wavelet Convolution Neural Network for epilepsy EEG classification. Attention Mechanism-based Wavelet Convolution Neural Network firstly uses multi-scale wavelet analysis to decompose the input EEGs to obtain their components in different frequency bands. Then, these decomposed multi-scale EEGs are input into the Convolution Neural Network with an attention mechanism for further feature extraction and classification. The proposed algorithm achieves 98.89% triple classification accuracy on the Bonn EEG database and 99.70% binary classification accuracy on the Bern-Barcelona EEG database. Our experiments prove that the proposed algorithm achieves a state-of-the-art classification effect on epilepsy EEG.
Collapse
|
38
|
Espinoso A, Andrzejak RG. Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients. Phys Rev E 2022; 105:034212. [PMID: 35428047 DOI: 10.1103/physreve.105.034212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for univariate measures of phase irregularity.
Collapse
Affiliation(s)
- Anaïs Espinoso
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Catalonia, Spain
| | - Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| |
Collapse
|
39
|
Müller M, Dekkers M, Wiest R, Schindler K, Rummel C. More Than Spikes: On the Added Value of Non-linear Intracranial EEG Analysis for Surgery Planning in Temporal Lobe Epilepsy. Front Neurol 2022; 12:741450. [PMID: 35095712 PMCID: PMC8793863 DOI: 10.3389/fneur.2021.741450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy surgery can be a very effective therapy in medication refractory patients. During patient evaluation intracranial EEG is analyzed by clinical experts to identify the brain tissue generating epileptiform events. Quantitative EEG analysis increasingly complements this approach in research settings, but not yet in clinical routine. We investigate the correspondence between epileptiform events and a specific quantitative EEG marker. We analyzed 99 preictal epochs of multichannel intracranial EEG of 40 patients with mixed etiologies. Time and channel of occurrence of epileptiform events (spikes, slow waves, sharp waves, fast oscillations) were annotated by a human expert and non-linear excess interrelations were calculated as a quantitative EEG marker. We assessed whether the visually identified preictal events predicted channels that belonged to the seizure onset zone, that were later resected or that showed strong non-linear interrelations. We also investigated whether the seizure onset zone or the resection were predicted by channels with strong non-linear interrelations. In patients with temporal lobe epilepsy (32 of 40), epileptic spikes and the seizure onset zone predicted the resected brain tissue much better in patients with favorable seizure control after surgery than in unfavorable outcomes. Beyond that, our analysis did not reveal any significant associations with epileptiform EEG events. Specifically, none of the epileptiform event types did predict non-linear interrelations. In contrast, channels with strong non-linear excess EEG interrelations predicted the resected channels better in patients with temporal lobe epilepsy and favorable outcome. Also in the small number of patients with seizure onset in the frontal and parietal lobes, no association between epileptiform events and channels with strong non-linear excess EEG interrelations was detectable. In contrast to patients with temporal seizure onset, EEG channels with strong non-linear excess interrelations did neither predict the seizure onset zone nor the resection of these patients or allow separation between patients with favorable and unfavorable seizure control. Our study indicates that non-linear excess EEG interrelations are not strictly associated with epileptiform events, which are one key concept of current clinical EEG assessment. Rather, they may provide information relevant for surgery planning in temporal lobe epilepsy. Our study suggests to incorporate quantitative EEG analysis in the workup of clinical cases. We make the EEG epochs and expert annotations publicly available in anonymized form to foster similar analyses for other quantitative EEG methods.
Collapse
Affiliation(s)
- Michael Müller
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Martijn Dekkers
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| |
Collapse
|
40
|
Al-Hadeethi H, Abdulla S, Diykh M, Green JH. Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection. Diagnostics (Basel) 2021; 12:74. [PMID: 35054242 PMCID: PMC8774996 DOI: 10.3390/diagnostics12010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians to diagnose epilepsy accurately. In this paper, a determinant of covariance matrix (Cov-Det) model is suggested for reducing EEG dimensionality. First, EEG signals are segmented into intervals using a sliding window technique. Then, Cov-Det is applied to each interval. To construct a features vector, a set of statistical features are extracted from each interval. To eliminate redundant features, the Kolmogorov-Smirnov (KST) and Mann-Whitney U (MWUT) tests are integrated, the extracted features ranked based on KST and MWUT metrics, and arithmetic operators are adopted to construe the most pertinent classified features for each pair in the EEG signal group. The selected features are then fed into the proposed AdaBoost Back-Propagation neural network (AB_BP_NN) to effectively classify EEG signals into seizure and free seizure segments. Finally, the AB_BP_NN is compared with several classical machine learning techniques; the results demonstrate that the proposed mode of AB_BP_NN provides insignificant false positive rates, simpler design, and robustness in classifying epileptic signals. Two datasets, the Bern-Barcelona and Bonn datasets, are used for performance evaluation. The proposed technique achieved an average accuracy of 100% and 98.86%, respectively, for the Bern-Barcelona and Bonn datasets, which is considered a noteworthy improvement compared to the current state-of-the-art methods.
Collapse
Affiliation(s)
- Hanan Al-Hadeethi
- School of Sciences, University of Southern Queensland, Toowoomba, QLD 4300, Australia;
| | - Shahab Abdulla
- USQ College, University of Southern Queensland, Toowoomba, QLD 4300, Australia
| | - Mohammed Diykh
- College of Education for Pure Science, University of Thi-Qar, Nasiriyah 64001, Iraq
- Information and Communication Technology Research Group, Scientific Research Centre, Al-Ayen University, Nasiriyah 64001, Iraq
| | - Jonathan H. Green
- USQ College, University of Southern Queensland, Toowoomba, QLD 4300, Australia
- Faculty of the Humanities, University of the Free State, Bloemfontein 9301, South Africa
| |
Collapse
|
41
|
Hoogteijling S, Zijlmans M. Deep learning for epileptogenic zone delineation from the invasive EEG: challenges and lookouts. Brain Commun 2021; 4:fcab307. [PMID: 35169704 PMCID: PMC8833315 DOI: 10.1093/braincomms/fcab307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022] Open
Abstract
This scientific commentary refers to 'Refining epileptogenic high-frequency oscillations using deep learning: a reverse engineering approach' by Zhang et al. (https://doi.org/10.1093/braincomms/fcab267).
Collapse
Affiliation(s)
- Sem Hoogteijling
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
- Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
42
|
Daniel Arzate-Mena J, Abela E, Olguín-Rodríguez PV, Ríos-Herrera W, Alcauter S, Schindler K, Wiest R, Müller MF, Rummel C. Stationary EEG pattern relates to large-scale resting state networks - An EEG-fMRI study connecting brain networks across time-scales. Neuroimage 2021; 246:118763. [PMID: 34863961 DOI: 10.1016/j.neuroimage.2021.118763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Relating brain dynamics acting on time scales that differ by at least an order of magnitude is a fundamental issue in brain research. The same is true for the observation of stable dynamical structures in otherwise highly non-stationary signals. The present study addresses both problems by the analysis of simultaneous resting state EEG-fMRI recordings of 53 patients with epilepsy. Confirming previous findings, we observe a generic and temporally stable average correlation pattern in EEG recordings. We design a predictor for the General Linear Model describing fluctuations around the stationary EEG correlation pattern and detect resting state networks in fMRI data. The acquired statistical maps are contrasted to several surrogate tests and compared with maps derived by spatial Independent Component Analysis of the fMRI data. By means of the proposed EEG-predictor we observe core nodes of known fMRI resting state networks with high specificity in the default mode, the executive control and the salience network. Our results suggest that both, the stationary EEG pattern as well as resting state fMRI networks are different expressions of the same brain activity. This activity is interpreted as the dynamics on (or close to) a stable attractor in phase space that is necessary to maintain the brain in an efficient operational mode. We discuss that this interpretation is congruent with the theoretical framework of complex systems as well as with the brain's energy balance.
Collapse
Affiliation(s)
- J Daniel Arzate-Mena
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos,Cuernavaca Morelos, Mexico
| | - Eugenio Abela
- Center for Neuropsychiatrics, Psychiatric Services Aargau AG, Windisch, Switzerland
| | | | - Wady Ríos-Herrera
- Facultad de Psicología Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad (C3), Universisdad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sarael Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus F Müller
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico; Centro de Ciencias de la Complejidad (C3), Universisdad Nacional Autónoma de México, Mexico City 04510, Mexico; Centro Internacional de Ciencias A. C., Cuernavaca, México
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
43
|
Exploiting Feature Selection and Neural Network Techniques for Identification of Focal and Nonfocal EEG Signals in TQWT Domain. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6283900. [PMID: 34659691 PMCID: PMC8418932 DOI: 10.1155/2021/6283900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
For drug resistance patients, removal of a portion of the brain as a cause of epileptic seizures is a surgical remedy. However, before surgery, the detailed analysis of the epilepsy localization area is an essential and logical step. The Electroencephalogram (EEG) signals from these areas are distinct and are referred to as focal, while the EEG signals from other normal areas are known as nonfocal. The visual inspection of multiple channels for detecting the focal EEG signal is time-consuming and prone to human error. To address this challenge, we propose a novel method based on differential operator and Tunable Q-factor wavelet transform (TQWT) to distinguish the focal and nonfocal signals. For this purpose, first, the EEG signal was differenced and then decomposed by TQWT. Second, several entropy-based features were derived from the TQWT subbands. Third, the efficacy of the six binary feature selection algorithms, binary bat algorithm (BBA), binary differential evolution (BDE) algorithm, firefly algorithm (FA), genetic algorithm (GA), grey wolf optimization (GWO), and particle swarm optimization (PSO), was evaluated. In the end, the selected features were fed to several machine learning and neural network classifiers. We observed that the PSO with neural networks provides an effective solution for the application of focal EEG signal detection. The proposed framework resulted in an average classification accuracy of 97.68%, a sensitivity of 97.26%, and a specificity of 98.11% in a tenfold cross-validation strategy, which is higher than the state of the art used in the public Bern-Barcelona EEG database.
Collapse
|
44
|
Janisch J, Mitoyen C, Perinot E, Spezie G, Fusani L, Quigley C. Video Recording and Analysis of Avian Movements and Behavior: Insights from Courtship Case Studies. Integr Comp Biol 2021; 61:1378-1393. [PMID: 34037219 PMCID: PMC8516111 DOI: 10.1093/icb/icab095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Video recordings are useful tools for advancing our understanding of animal movements and behavior. Over the past decades, a burgeoning area of behavioral research has put forward innovative methods to investigate animal movement using video analysis, which includes motion capture and machine learning algorithms. These tools are particularly valuable for the study of elaborate and complex motor behaviors, but can be challenging to use. We focus in particular on elaborate courtship displays, which commonly involve rapid and/or subtle motor patterns. Here, we review currently available tools and provide hands-on guidelines for implementing these techniques in the study of avian model species. First, we suggest a set of possible strategies and solutions for video acquisition based on different model systems, environmental conditions, and time or financial budget. We then outline the available options for video analysis and illustrate how different analytical tools can be chosen to draw inference about animal motor performance. Finally, a detailed case study describes how these guidelines have been implemented to study courtship behavior in golden-collared manakins (Manacus vitellinus).
Collapse
Affiliation(s)
- Judith Janisch
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Clementine Mitoyen
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - Elisa Perinot
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Giovanni Spezie
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - Cliodhna Quigley
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
45
|
Multiscale Permutation Lempel-Ziv Complexity Measure for Biomedical Signal Analysis: Interpretation and Application to Focal EEG Signals. ENTROPY 2021; 23:e23070832. [PMID: 34210034 PMCID: PMC8307896 DOI: 10.3390/e23070832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
This paper analyses the complexity of electroencephalogram (EEG) signals in different temporal scales for the analysis and classification of focal and non-focal EEG signals. Futures from an original multiscale permutation Lempel–Ziv complexity measure (MPLZC) were obtained. MPLZC measure combines a multiscale structure, ordinal analysis, and permutation Lempel–Ziv complexity for quantifying the dynamic changes of an electroencephalogram (EEG). We also show the dependency of MPLZC on several straight-forward signal processing concepts, which appear in biomedical EEG activity via a set of synthetic signals. The main material of the study consists of EEG signals, which were obtained from the Bern-Barcelona EEG database. The signals were divided into two groups: focal EEG signals (n = 100) and non-focal EEG signals (n = 100); statistical analysis was performed by means of non-parametric Mann–Whitney test. The mean value of MPLZC results in the non-focal group are significantly higher than those in the focal group for scales above 1 (p < 0.05). The result indicates that the non-focal EEG signals are more complex. MPLZC feature sets are used for the least squares support vector machine (LS-SVM) classifier to classify into the focal and non-focal EEG signals. Our experimental results confirmed the usefulness of the MPLZC method for distinguishing focal and non-focal EEG signals with a classification accuracy of 86%.
Collapse
|
46
|
Smith G, Stacey WC. The accuracy of quantitative EEG biomarker algorithms depends upon seizure onset dynamics. Epilepsy Res 2021; 176:106702. [PMID: 34229226 DOI: 10.1016/j.eplepsyres.2021.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To compare the performance of different ictal quantitative biomarkers of the seizure onset zone (SOZ) across many seizures in a cohort of consecutive patients with a variety of seizure onset patterns. METHODS The Epileptogenicity Index (EI, a measure of fast activity) and Slow Polarizing Shift index (SPS, a measure of infraslow activity) were calculated for 212 seizures (22 patients). After stratification by onset pattern, median index values inside and outside the SOZ were compared in aggregate and for each of the onset patterns. Receiver Operating Characteristic (ROC) curves were constructed to compare the performance of each index. RESULTS Median values of EI (0.056 vs 0.0087), SPS (0.27 vs 0.19), and CI (0.21 vs 0.12) were significantly higher for contacts inside the SOZ, all p < 0.0001. Analysis of AUC showed variable performance of these indices across seizure types, although AUC for EI and SPS was generally greatest for seizures with fast activity at onset. CONCLUSIONS All indices were significantly higher for contacts inside the SOZ; however, the performance of these indices varied depending on the pattern of seizure onset. SIGNIFICANCE These findings suggest that future studies of quantitative biomarkers of the SOZ should account for seizure onset pattern.
Collapse
Affiliation(s)
- Garnett Smith
- Department of Pediatrics, Division of Pediatric Neurology, University of Michigan, 1540 E Hospital Drive, Box 4279, Ann Arbor, MI, 48109-4279, USA.
| | - William C Stacey
- Department of Neurology, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA; Department of Biomedical Engineering, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA; Biointerfaces Institute, University of Michigan, 1500 E Medical Center Drive, SPC 5316, Ann Arbor, MI, 48109-5316, USA.
| |
Collapse
|
47
|
Shoeibi A, Khodatars M, Ghassemi N, Jafari M, Moridian P, Alizadehsani R, Panahiazar M, Khozeimeh F, Zare A, Hosseini-Nejad H, Khosravi A, Atiya AF, Aminshahidi D, Hussain S, Rouhani M, Nahavandi S, Acharya UR. Epileptic Seizures Detection Using Deep Learning Techniques: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5780. [PMID: 34072232 PMCID: PMC8199071 DOI: 10.3390/ijerph18115780] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
A variety of screening approaches have been proposed to diagnose epileptic seizures, using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities. Artificial intelligence encompasses a variety of areas, and one of its branches is deep learning (DL). Before the rise of DL, conventional machine learning algorithms involving feature extraction were performed. This limited their performance to the ability of those handcrafting the features. However, in DL, the extraction of features and classification are entirely automated. The advent of these techniques in many areas of medicine, such as in the diagnosis of epileptic seizures, has made significant advances. In this study, a comprehensive overview of works focused on automated epileptic seizure detection using DL techniques and neuroimaging modalities is presented. Various methods proposed to diagnose epileptic seizures automatically using EEG and MRI modalities are described. In addition, rehabilitation systems developed for epileptic seizures using DL have been analyzed, and a summary is provided. The rehabilitation tools include cloud computing techniques and hardware required for implementation of DL algorithms. The important challenges in accurate detection of automated epileptic seizures using DL with EEG and MRI modalities are discussed. The advantages and limitations in employing DL-based techniques for epileptic seizures diagnosis are presented. Finally, the most promising DL models proposed and possible future works on automated epileptic seizure detection are delineated.
Collapse
Affiliation(s)
- Afshin Shoeibi
- Faculty of Electrical Engineering, Biomedical Data Acquisition Lab (BDAL), K. N. Toosi University of Technology, Tehran 1631714191, Iran;
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | | | - Navid Ghassemi
- Faculty of Electrical Engineering, Biomedical Data Acquisition Lab (BDAL), K. N. Toosi University of Technology, Tehran 1631714191, Iran;
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty, Semnan University, Semnan 3513119111, Iran;
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Maryam Panahiazar
- Institute for Computational Health Sciences, School of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad 6518115743, Iran;
| | - Hossein Hosseini-Nejad
- Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran 1631714191, Iran;
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Amir F. Atiya
- Department of Computer Engineering, Faculty of Engineering, Cairo University, Cairo 12613, Egypt;
| | - Diba Aminshahidi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Sadiq Hussain
- System Administrator at Dibrugarh University, Assam 786004, India;
| | - Modjtaba Rouhani
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (D.A.); (M.R.)
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3217, Australia; (R.A.); (F.K.); (A.K.); (S.N.)
| | - Udyavara Rajendra Acharya
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Bioinformatics and Medical Engineering, Taichung City 41354, Taiwan
| |
Collapse
|
48
|
Saminu S, Xu G, Shuai Z, Abd El Kader I, Jabire AH, Ahmed YK, Karaye IA, Ahmad IS. A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal. Brain Sci 2021; 11:668. [PMID: 34065473 PMCID: PMC8160878 DOI: 10.3390/brainsci11050668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023] Open
Abstract
The benefits of early detection and classification of epileptic seizures in analysis, monitoring and diagnosis for the realization and actualization of computer-aided devices and recent internet of medical things (IoMT) devices can never be overemphasized. The success of these applications largely depends on the accuracy of the detection and classification techniques employed. Several methods have been investigated, proposed and developed over the years. This paper investigates various seizure detection algorithms and classifications in the last decade, including conventional techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding. A performance comparison was carried out on the different algorithms investigated, and their advantages and disadvantages were explored. From our survey, much attention has recently been paid to exploring the efficacy of deep learning algorithms in seizure detection and classification, which are employed in other areas such as image processing and classification. Hybrid deep learning has also been explored, with CNN-RNN being the most popular.
Collapse
Affiliation(s)
- Sani Saminu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
- Biomedical Engineering Department, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria;
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Zhang Shuai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Isselmou Abd El Kader
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Adamu Halilu Jabire
- Department of Electrical and Electronics Engineering, Taraba State University, Jalingo 660242, Nigeria;
| | - Yusuf Kola Ahmed
- Biomedical Engineering Department, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria;
| | - Ibrahim Abdullahi Karaye
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Isah Salim Ahmad
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| |
Collapse
|
49
|
Computer-Aided Intracranial EEG Signal Identification Method Based on a Multi-Branch Deep Learning Fusion Model and Clinical Validation. Brain Sci 2021; 11:brainsci11050615. [PMID: 34064889 PMCID: PMC8150766 DOI: 10.3390/brainsci11050615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
Surgical intervention or the control of drug-refractory epilepsy requires accurate analysis of invasive inspection intracranial EEG (iEEG) data. A multi-branch deep learning fusion model is proposed to identify epileptogenic signals from the epileptogenic area of the brain. The classical approach extracts multi-domain signal wave features to construct a time-series feature sequence and then abstracts it through the bi-directional long short-term memory attention machine (Bi-LSTM-AM) classifier. The deep learning approach uses raw time-series signals to build a one-dimensional convolutional neural network (1D-CNN) to achieve end-to-end deep feature extraction and signal detection. These two branches are integrated to obtain deep fusion features and results. Resampling is employed to split the imbalanced epileptogenic and non-epileptogenic samples into balanced subsets for clinical validation. The model is validated over two publicly available benchmark iEEG databases to verify its effectiveness on a private, large-scale, clinical stereo EEG database. The model achieves high sensitivity (97.78%), accuracy (97.60%), and specificity (97.42%) on the Bern–Barcelona database, surpassing the performance of existing state-of-the-art techniques. It is then demonstrated on a clinical dataset with an average intra-subject accuracy of 92.53% and cross-subject accuracy of 88.03%. The results suggest that the proposed method is a valuable and extremely robust approach to help researchers and clinicians develop an automated method to identify the source of iEEG signals.
Collapse
|
50
|
Shams M, Sagheer A. A natural evolution optimization based deep learning algorithm for neurological disorder classification. Biomed Mater Eng 2021; 31:73-94. [PMID: 32474459 DOI: 10.3233/bme-201081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND A neurological disorder is one of the significant problems of the nervous system that affects the essential functions of the human brain and spinal cord. Monitoring brain activity through electroencephalography (EEG) has become an important tool in the diagnosis of brain disorders. The robust automatic classification of EEG signals is an important step towards detecting a brain disorder in its earlier stages before status deterioration. OBJECTIVE Motivated by the computation capabilities of natural evolution strategies (NES), this paper introduces an effective automatic classification approach denoted as natural evolution optimization-based deep learning (NEODL). The proposed classifier is an ingredient in a signal processing chain that comprises other state-of-the-art techniques in a consistent framework for the purpose of automatic EEG classification. METHODS The proposed framework consists of four steps. First, the L1-principal component analysis technique is used to enhance the raw EEG signal against any expected artifacts or noise. Second, the purified EEG signal is decomposed into a number of sub-bands by applying the wavelet transform technique where a number of spectral and statistical features are extracted. Third, the extracted features are examined using the artificial bee colony approach in order to optimally select the best features. Lastly, the selected features are treated using the proposed NEODL classifier, where the input signal is classified according to the problem at hand. RESULTS The proposed approach is evaluated using two benchmark datasets and addresses two neurological disorder applications: epilepsy disease and motor imagery. Several experiments are conducted where the proposed classifier outperforms other deep learning techniques as well as other existing approaches. CONCLUSION The proposed framework, including the proposed classifier (NEODL), has a promising performance in the classification of EEG signals, including epilepsy disease and motor imagery. Based on the given results, it is expected that this approach will also be useful for the identification of the epileptogenic areas in the human brain. Accordingly, it may find application in the neuro-intensive care units, epilepsy monitoring units, and practical brain-computer interface systems in clinics.
Collapse
Affiliation(s)
- Maha Shams
- Center for Artificial Intelligence and Robotics (Cairo), Department of Computer Sciences, Aswan University, Egypt
| | - Alaa Sagheer
- Center for Artificial Intelligence and Robotics (Cairo), Department of Computer Sciences, Aswan University, Egypt.,Department of Computer Sciences, College of Computer Sciences and IT, King Faisal University, Saudi Arabia
| |
Collapse
|