1
|
Kozhukhov T, Shendruk TN. Mesoscopic simulations of active nematics. SCIENCE ADVANCES 2022; 8:eabo5788. [PMID: 36001669 PMCID: PMC9401632 DOI: 10.1126/sciadv.abo5788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Coarse-grained, mesoscale simulations are invaluable for studying soft condensed matter because of their ability to model systems in which a background solvent plays a substantial role but is not the primary interest. Such methods generally model passive solvents; however, far-from-equilibrium systems may also be composed of complex solutes suspended in an active fluid. Yet, few coarse-grained simulation methods exist to model an active medium. We introduce an algorithm to simulate active nematics, which builds on multiparticle collision dynamics (MPCD) for passive fluctuating nematohydrodynamics by introducing dipolar activity in the local collision operator. Active nematic MPCD (AN-MPCD) simulations not only exhibit the key characteristics of active nematic turbulence but, as a particle-based algorithm, also reproduce crucial attributes of active particle models. Thus, mesoscopic AN-MPCD is an approach that bridges microscopic and continuum descriptions, allowing simulations of composite active-passive systems.
Collapse
|
2
|
Abstract
Pattern formation processes in active systems give rise to a plethora of collective structures. Predicting how the emergent structures depend on the microscopic interactions between the moving agents remains a challenge. By introducing a high-density actin gliding assay on a fluid membrane, we demonstrate the emergence of polar structures in a regime of nematic binary interactions dominated by steric repulsion. The transition from a microscopic nematic symmetry to a macroscopic polar structure is linked to microscopic polarity sorting mechanisms, including accumulation in wedge-like topological defects. Our results should be instrumental for a better understanding of pattern formation and polarity sorting processes in active matter. Collective motion of active matter is ubiquitously observed, ranging from propelled colloids to flocks of bird, and often features the formation of complex structures composed of agents moving coherently. However, it remains extremely challenging to predict emergent patterns from the binary interaction between agents, especially as only a limited number of interaction regimes have been experimentally observed so far. Here, we introduce an actin gliding assay coupled to a supported lipid bilayer, whose fluidity forces the interaction between self-propelled filaments to be dominated by steric repulsion. This results in filaments stopping upon binary collisions and eventually aligning nematically. Such a binary interaction rule results at high densities in the emergence of dynamic collectively moving structures including clusters, vortices, and streams of filaments. Despite the microscopic interaction having a nematic symmetry, the emergent structures are found to be polar, with filaments collectively moving in the same direction. This is due to polar biases introduced by the stopping upon collision, both on the individual filaments scale as well as on the scale of collective structures. In this context, positive half-charged topological defects turn out to be a most efficient trapping and polarity sorting conformation.
Collapse
|
3
|
Clusella P, Pastor-Satorras R. Phase transitions on a class of generalized Vicsek-like models of collective motion. CHAOS (WOODBURY, N.Y.) 2021; 31:043116. [PMID: 34251260 DOI: 10.1063/5.0046926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 06/13/2023]
Abstract
Systems composed of interacting self-propelled particles (SPPs) display different forms of order-disorder phase transitions relevant to collective motion. In this paper, we propose a generalization of the Vicsek model characterized by an angular noise term following an arbitrary probability density function, which might depend on the state of the system and thus have a multiplicative character. We show that the well established vectorial Vicsek model can be expressed in this general formalism by deriving the corresponding angular probability density function, as well as we propose two new multiplicative models consisting of bivariate Gaussian and wrapped Gaussian distributions. With the proposed formalism, the mean-field system can be solved using the mean resultant length of the angular stochastic term. Accordingly, when the SPPs interact globally, the character of the phase transition depends on the choice of the noise distribution, being first order with a hybrid scaling for the vectorial and wrapped Gaussian distributions, and second order for the bivariate Gaussian distribution. Numerical simulations reveal that this scenario also holds when the interactions among SPPs are given by a static complex network. On the other hand, using spatial short-range interactions displays, in all the considered instances, a discontinuous transition with a coexistence region, consistent with the original formulation of the Vicsek model.
Collapse
Affiliation(s)
- Pau Clusella
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain
| | - Romualdo Pastor-Satorras
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Abstract
The emergence of macroscopic order and patterns is a central paradigm in systems of (self-)propelled agents and a key component in the structuring of many biological systems. The relationships between the ordering process and the underlying microscopic interactions have been extensively explored both experimentally and theoretically. While emerging patterns often show one specific symmetry (e.g., nematic lane patterns or polarized traveling flocks), depending on the symmetry of the alignment interactions patterns with different symmetries can apparently coexist. Indeed, recent experiments with an actomysin motility assay suggest that polar and nematic patterns of actin filaments can interact and dynamically transform into each other. However, theoretical understanding of the mechanism responsible remains elusive. Here, we present a kinetic approach complemented by a hydrodynamic theory for agents with mixed alignment symmetries, which captures the experimentally observed phenomenology and provides a theoretical explanation for the coexistence and interaction of patterns with different symmetries. We show that local, pattern-induced symmetry breaking can account for dynamically coexisting patterns with different symmetries. Specifically, in a regime with moderate densities and a weak polar bias in the alignment interaction, nematic bands show a local symmetry-breaking instability within their high-density core region, which induces the formation of polar waves along the bands. These instabilities eventually result in a self-organized system of nematic bands and polar waves that dynamically transform into each other. Our study reveals a mutual feedback mechanism between pattern formation and local symmetry breaking in active matter that has interesting consequences for structure formation in biological systems.
Collapse
|
5
|
Zhu WJ, Zhong WR, Xiong JW, Ai BQ. Transport of particles driven by the traveling obstacle arrays. J Chem Phys 2018; 149:174906. [PMID: 30409003 DOI: 10.1063/1.5049719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transport of three types of particles (passive particles, active particles without polar interaction, and active particles with polar interaction) is numerically investigated in the presence of traveling obstacle arrays. The transport behaviors are different for different types of particles. For passive particles, there exists an optimal traveling speed (or the translational diffusion) at which the average velocity of particles takes its maximum value. For active particles without polar interaction, the average velocity of particles is a peaked function of the obstacle traveling speed. The average velocity decreases monotonically with increase of the rotational diffusion for large driving speed, while it is a peaked function of the rotational diffusion for small driving speed. For active particles with polar interaction, interestingly, within particular parameter regimes, active particles can move in the opposite direction to the obstacles. The average velocity of particles can change its direction by changing the system parameters (the obstacles driving speed, the polar interaction strength, and the rotational diffusion).
Collapse
Affiliation(s)
- Wei-Jing Zhu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Wei-Rong Zhong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Jian-Wen Xiong
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Huber L, Suzuki R, Krüger T, Frey E, Bausch AR. Emergence of coexisting ordered states in active matter systems. Science 2018; 361:255-258. [DOI: 10.1126/science.aao5434] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/22/2018] [Accepted: 05/16/2018] [Indexed: 01/16/2023]
Abstract
Active systems can produce a far greater variety of ordered patterns than conventional equilibrium systems. In particular, transitions between disorder and either polar- or nematically ordered phases have been predicted and observed in two-dimensional active systems. However, coexistence between phases of different types of order has not been reported. We demonstrate the emergence of dynamic coexistence of ordered states with fluctuating nematic and polar symmetry in an actomyosin motility assay. Combining experiments with agent-based simulations, we identify sufficiently weak interactions that lack a clear alignment symmetry as a prerequisite for coexistence. Thus, the symmetry of macroscopic order becomes an emergent and dynamic property of the active system. These results provide a pathway by which living systems can express different types of order by using identical building blocks.
Collapse
Affiliation(s)
- L. Huber
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Theresienstrasse 37, Germany
| | - R. Suzuki
- Lehrstuhl für Biophysik (E27), Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
- Graduate School of Medicine, Kyoto University, 606-8501 Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, 606-8501 Kyoto, Japan
| | - T. Krüger
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Theresienstrasse 37, Germany
| | - E. Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Theresienstrasse 37, Germany
| | - A. R. Bausch
- Lehrstuhl für Biophysik (E27), Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| |
Collapse
|
7
|
Zhu WJ, Li FG, Ai BQ. Transport of alignment active particles in funnel structures. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:59. [PMID: 28527038 DOI: 10.1140/epje/i2017-11547-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
We study the transport of alignment active particles in complex confined structures (an array of asymmetric funnels). It is found that due to the existence of the multiple pathways, the alignment interaction can enrich the transport behavior of active particles. In an array of asymmetric funnels, the purely nematic alignment always suppresses the rectification. However, the polar alignment does not always promote the rectification, the rectification is suppressed for large self-propulsion speed. In addition, we also found the existence of optimal parameters (the self-propulsion speed and the rotational diffusion coefficient) at which the directed velocity takes its maximal value.
Collapse
Affiliation(s)
- Wei-Jing Zhu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou, China
| | - Feng-Guo Li
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006, Guangzhou, China.
| |
Collapse
|
8
|
Canova GA, Levin Y, Arenzon JJ. Competing nematic interactions in a generalized XY model in two and three dimensions. Phys Rev E 2016; 94:032140. [PMID: 27739795 DOI: 10.1103/physreve.94.032140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 06/06/2023]
Abstract
We study a generalization of the XY model with an additional nematic-like term through extensive numerical simulations and finite-size techniques, both in two and three dimensions. While the original model favors local alignment, the extra term induces angles of 2π/q between neighboring spins. We focus here on the q=8 case (while presenting new results for other values of q as well) whose phase diagram is much richer than the well-known q=2 case. In particular, the model presents not only continuous, standard transitions between Berezinskii-Kosterlitz-Thouless (BKT) phases as in q=2, but also infinite-order transitions involving intermediate, competition-driven phases absent for q=2 and 3. Besides presenting multiple transitions, our results show that having vortices decoupling at a transition is not a sufficient condition for it to be of BKT type.
Collapse
Affiliation(s)
- Gabriel A Canova
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre RS, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre RS, Brazil
| | - Jeferson J Arenzon
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre RS, Brazil
| |
Collapse
|
9
|
Canova GA, Levin Y, Arenzon JJ. Kosterlitz-Thouless and Potts transitions in a generalized XY model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012126. [PMID: 24580191 DOI: 10.1103/physreve.89.012126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 06/03/2023]
Abstract
We present extensive numerical simulations of a generalized XY model with nematic-like terms recently proposed by Poderoso et al. [ Phys. Rev. Lett. 106 067202 (2011)]. Using finite size scaling and focusing on the q=3 case, we locate the transitions between the paramagnetic (P), the nematic-like (N), and the ferromagnetic (F) phases. The results are compared with the recently derived lower bounds for the P-N and P-F transitions. While the P-N transition is found to be very close to the lower bound, the P-F transition occurs significantly above the bound. Finally, the transition between the nematic-like and the ferromagnetic phases is found to belong to the three-states Potts universality class.
Collapse
Affiliation(s)
- Gabriel A Canova
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre RS, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre RS, Brazil
| | - Jeferson J Arenzon
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre RS, Brazil
| |
Collapse
|
10
|
Solon AP, Tailleur J. Revisiting the flocking transition using active spins. PHYSICAL REVIEW LETTERS 2013; 111:078101. [PMID: 23992085 DOI: 10.1103/physrevlett.111.078101] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Indexed: 06/02/2023]
Abstract
We consider an active Ising model in which spins both diffuse and align on lattice in one and two dimensions. The diffusion is biased so that plus or minus spins hop preferably to the left or to the right, which generates a flocking transition at low temperature and high density. We construct a coarse-grained description of the model that predicts this transition to be a first-order liquid-gas transition in the temperature-density ensemble, with a critical density sent to infinity. In this first-order phase transition, the magnetization is proportional to the liquid fraction and thus varies continuously throughout the phase diagram. Using microscopic simulations, we show that this theoretical prediction holds in 2D whereas the fluctuations alter the transition in 1D, preventing, for instance, any spontaneous symmetry breaking.
Collapse
Affiliation(s)
- A P Solon
- Université Paris Diderot, Sorbonne Paris Cite, MSC, UMR 7057 CNRS, F75205 Paris, France
| | | |
Collapse
|
11
|
Czirók A, Varga K, Méhes E, Szabó A. Collective cell streams in epithelial monolayers depend on cell adhesion. NEW JOURNAL OF PHYSICS 2013; 15:10.1088/1367-2630/15/7/075006. [PMID: 24363603 PMCID: PMC3866308 DOI: 10.1088/1367-2630/15/7/075006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report a spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns.
Collapse
Affiliation(s)
- András Czirók
- Dept. of Anatomy and Cell Biology; University of Kansas Medical Center; Kansas City, KS, USA
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
- Corresponding author:
| | - Katalin Varga
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| | - Előd Méhes
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| | - András Szabó
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| |
Collapse
|