1
|
de Moraes LMT, Macêdo AMS, Ospina R, Vasconcelos GL. Matrix H-theory approach to stock market fluctuations. Phys Rev E 2025; 111:034101. [PMID: 40247477 DOI: 10.1103/physreve.111.034101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
We introduce matrix H theory, a framework for analyzing collective behavior arising from multivariate stochastic processes with hierarchical structure. The theory models the joint distribution of the multiple variables (the measured signal) as a compound of a large-scale multivariate distribution with the distribution of a slowly fluctuating background. The background is characterized by a hierarchical stochastic evolution of internal degrees of freedom, representing the correlations between stocks at different timescales. As in its univariate version, the matrix H-theory formalism also has two universality classes, Wishart and inverse Wishart, enabling a concise description of both the background and the signal probability distributions in terms of Meijer G functions with matrix argument. Empirical analysis of daily returns of stocks within the S&P 500 demonstrates the effectiveness of matrix H theory in describing fluctuations in stock markets. These findings contribute to a deeper understanding of multivariate hierarchical processes and offer potential for developing more informed portfolio strategies in financial markets.
Collapse
Affiliation(s)
- Luan M T de Moraes
- Universidade Federal de Pernambuco, Laboratório de Física Teórica e Computacional, Departamento de Física, Recife, 50670-901 Pernambuco, Brazil
| | - Antônio M S Macêdo
- Universidade Federal de Pernambuco, Laboratório de Física Teórica e Computacional, Departamento de Física, Recife, 50670-901 Pernambuco, Brazil
| | - Raydonal Ospina
- Universidade Federal do Pernambuco, Universidade Federal da Bahia, Departamento de Estatística, Salvador, 40170-110 Bahia, Brazil and Departamento de Estatística, Recife, 50670-901 Pernambuco, Brazil
| | - Giovani L Vasconcelos
- Universidade Federal do Paraná, Departamento de Física, Curitiba, 81531-980 Paraná, Brazil
| |
Collapse
|
2
|
Vasconcelos GL, Ribeiro LRC, Macêdo AMS, González IRR, Ospina R, Brum AA. Turbulence hierarchy in foreign exchange markets. Phys Rev E 2024; 109:044313. [PMID: 38755908 DOI: 10.1103/physreve.109.044313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
We present a multiscale stochastic analysis of foreign exchange rates using the H-theory formalism, which provides a hierarchical intermittency model for the information cascade in the currency market. We examine the distributions of returns and volatilities for the three most traded currency pairs: euro-U.S. dollar, U.S. dollar-Japanese yen, and British pound-U.S. dollar. We find that these markets have a hierarchy of timescales, with larger markets exhibiting more hierarchy levels. We provide a theoretical framework for understanding why the number of levels in the information cascade increases with market size, in analogy with similar behavior for the energy cascade in turbulence as a function of Reynolds number. We briefly argue that using turbulence-like models for financial markets can also provide valuable insights for developing efficient algorithmic trading strategies.
Collapse
Affiliation(s)
- Giovani L Vasconcelos
- Departamento de Física, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | - Lucas R C Ribeiro
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Antônio M S Macêdo
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Iván R R González
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
- Instituto de Física, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso, Chile
| | - Raydonal Ospina
- Departamento de Estatística, Universidade Federal da Bahia, Salvador 40170-110, BA, Brazil
- Departamento de Estatística, Universidade Federal do Pernambuco, Recife 50670-901, PE, Brazil
| | - Arthur A Brum
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| |
Collapse
|
3
|
Barbosa ALR, de Lima THV, González IRR, Pessoa NL, Macêdo AMS, Vasconcelos GL. Turbulence Hierarchy and Multifractality in the Integer Quantum Hall Transition. PHYSICAL REVIEW LETTERS 2022; 128:236803. [PMID: 35749199 DOI: 10.1103/physrevlett.128.236803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
We offer a new perspective on the problem of characterizing mesoscopic fluctuations in the interplateau regions of the integer quantum Hall transition. We found that longitudinal and transverse conductance fluctuations, generated by varying the external magnetic field within a microscopic model, are multifractal and lead to distributions of conductance increments (magnetoconductance) with heavy tails (intermittency) and signatures of a hierarchical structure (cascade) in the corresponding stochastic process, akin to Kolmogorov's theory of fluid turbulence. We confirm this picture by interpreting the stochastic process of the conductance increments in the framework of H theory, which is a continuous-time stochastic approach that incorporates the basic features of Kolmogorov's theory. The multifractal analysis of the conductance "time series," combined with the H-theory formalism, provides strong support for the overall characterization of mesoscopic fluctuations in the quantum Hall transition as a multifractal stochastic phenomenon with multiscale hierarchy, intermittency, and cascade effects.
Collapse
Affiliation(s)
- Anderson L R Barbosa
- Departamento de Física, Universidade Federal Rural de Pernambuco, Recife-PE 52171-900, Brazil
| | - Tiago H V de Lima
- Departamento de Física, Universidade Federal Rural de Pernambuco, Recife-PE 52171-900, Brazil
| | - Iván R R González
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife-PE 50670-901, Brazil
- Unidade Acadêmica de Belo Jardim, Universidade Federal Rural de Pernambuco, Belo Jardim-PE, Brazil
| | - Nathan L Pessoa
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife-PE 50670-901, Brazil
- Centro de Apoio à Pesquisa, Universidade Federal Rural de Pernambuco, Recife-PE 52171-900, Brazil
| | - Antônio M S Macêdo
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, Recife-PE 50670-901, Brazil
| | - Giovani L Vasconcelos
- Departamento de Física, Universidade Federal do Paraná, Curitiba-PR 81531-980, Brazil
| |
Collapse
|
4
|
Deppman A, Frederico T, Megías E, Menezes DP. Fractal Structure and Non-Extensive Statistics. ENTROPY 2018; 20:e20090633. [PMID: 33265722 PMCID: PMC7513158 DOI: 10.3390/e20090633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 12/03/2022]
Abstract
The role played by non-extensive thermodynamics in physical systems has been under intense debate for the last decades. With many applications in several areas, the Tsallis statistics have been discussed in detail in many works and triggered an interesting discussion on the most deep meaning of entropy and its role in complex systems. Some possible mechanisms that could give rise to non-extensive statistics have been formulated over the last several years, in particular a fractal structure in thermodynamic functions was recently proposed as a possible origin for non-extensive statistics in physical systems. In the present work, we investigate the properties of such fractal thermodynamical system and propose a diagrammatic method for calculations of relevant quantities related to such a system. It is shown that a system with the fractal structure described here presents temperature fluctuation following an Euler Gamma Function, in accordance with previous works that provided evidence of the connections between those fluctuations and Tsallis statistics. Finally, the scale invariance of the fractal thermodynamical system is discussed in terms of the Callan–Symanzik equation.
Collapse
Affiliation(s)
- Airton Deppman
- Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr.187, Cidade Universitária, CEP 05508-090 São Paulo, Brazil
- Correspondence:
| | - Tobias Frederico
- Instituto Tecnológico da Aeronáutica, 12228-900 São José dos Campos, Brazil
| | - Eugenio Megías
- Departamento de Física Teórica, Universidad del País Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain
| | - Debora P. Menezes
- Departamento de Física, CFM, Universidade Federal de Santa Catarina, CP 476, CEP 88040-900 Florianópolis, Brazil
| |
Collapse
|
5
|
Vasconcelos GL, Salazar DSP, Macêdo AMS. Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems. Phys Rev E 2018; 97:022104. [PMID: 29548225 DOI: 10.1103/physreve.97.022104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 06/08/2023]
Abstract
A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem-representing the region where the measurements are made-in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017)10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.
Collapse
Affiliation(s)
- Giovani L Vasconcelos
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco 50670-901 Recife, Pernambuco, Brazil
| | - Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - A M S Macêdo
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco 50670-901 Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Budini AA, Cáceres MO. First-passage time for superstatistical Fokker-Planck models. Phys Rev E 2018; 97:012137. [PMID: 29448367 DOI: 10.1103/physreve.97.012137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 06/08/2023]
Abstract
The first-passage-time (FPT) problem is studied for superstatistical models assuming that the mesoscopic system dynamics is described by a Fokker-Planck equation. We show that all moments of the random intensive parameter associated to the superstatistical approach can be put in one-to-one correspondence with the moments of the FPT. For systems subjected to an additional uncorrelated external force, the same statistical information is obtained from the dependence of the FPT moments on the external force. These results provide an alternative technique for checking the validity of superstatistical models. As an example, we characterize the mean FPT for a forced Brownian particle.
Collapse
Affiliation(s)
- Adrián A Budini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Atómico Bariloche, Avenida E. Bustillo Km 9.5, 8400 Bariloche, Argentina and Universidad Tecnológica Nacional (UTN-FRBA), Fanny Newbery 111, 8400 Bariloche, Argentina
| | - Manuel O Cáceres
- Centro Atómico Bariloche, CNEA, Instituto Balseiro and CONICET, 8400 Bariloche, Argentina
| |
Collapse
|
7
|
Macêdo AMS, González IRR, Salazar DSP, Vasconcelos GL. Universality classes of fluctuation dynamics in hierarchical complex systems. Phys Rev E 2017; 95:032315. [PMID: 28415188 DOI: 10.1103/physreve.95.032315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 06/07/2023]
Abstract
A unified approach is proposed to describe the statistics of the short-time dynamics of multiscale complex systems. The probability density function of the relevant time series (signal) is represented as a statistical superposition of a large time-scale distribution weighted by the distribution of certain internal variables that characterize the slowly changing background. The dynamics of the background is formulated as a hierarchical stochastic model whose form is derived from simple physical constraints, which in turn restrict the dynamics to only two possible classes. The probability distributions of both the signal and the background have simple representations in terms of Meijer G functions. The two universality classes for the background dynamics manifest themselves in the signal distribution as two types of tails: power law and stretched exponential, respectively. A detailed analysis of empirical data from classical turbulence and financial markets shows excellent agreement with the theory.
Collapse
Affiliation(s)
- A M S Macêdo
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco 50670-901 Recife, Pernambuco, Brazil
| | - Iván R Roa González
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco 50670-901 Recife, Pernambuco, Brazil
| | - D S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - G L Vasconcelos
- Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco 50670-901 Recife, Pernambuco, Brazil
| |
Collapse
|