1
|
Ray A, Rakshit S, Ghosh D, Dana SK. Intermittent large deviation of chaotic trajectory in Ikeda map: Signature of extreme events. CHAOS (WOODBURY, N.Y.) 2019; 29:043131. [PMID: 31042945 DOI: 10.1063/1.5092741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
We notice signatures of extreme eventslike behavior in a laser based Ikeda map. The trajectory of the system occasionally travels a large distance away from the bounded chaotic region, which appears as intermittent spiking events in the temporal dynamics. The large spiking events satisfy the conditions of extreme events as usually observed in dynamical systems. The probability density function of the large spiking events shows a long-tail distribution consistent with the characteristics of rare events. The interevent intervals obey a Poissonlike distribution. We locate the parameter regions of extreme events in phase diagrams. Furthermore, we study two Ikeda maps to explore how and when extreme events terminate via mutual interaction. A pure diffusion of information exchange is unable to terminate extreme events where synchronous occurrence of extreme events is only possible even for large interaction. On the other hand, a threshold-activated coupling can terminate extreme events above a critical value of mutual interaction.
Collapse
Affiliation(s)
- Arnob Ray
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Syamal K Dana
- Department of Mathematics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Choi D, Wishon MJ, Chang CY, Citrin DS, Locquet A. Multistate intermittency on the route to chaos of a semiconductor laser subjected to optical feedback from a long external cavity. CHAOS (WOODBURY, N.Y.) 2018; 28:011102. [PMID: 29390638 DOI: 10.1063/1.5013332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We observe experimentally two regimes of intermittency on the route to chaos of a semiconductor laser subjected to optical feedback from a long external cavity as the feedback level is increased. The first regime encountered corresponds to multistate intermittency involving two or three states composed of several combinations of periodic, quasiperiodic, and subharmonic dynamics. The second regime is observed for larger feedback levels and involves intermittency between period-doubled and chaotic regimes. This latter type of intermittency displays statistical properties similar to those of on-off intermittency.
Collapse
Affiliation(s)
- Daeyoung Choi
- Georgia Tech-CNRS UMI 2958, Georgia Tech Lorraine, 2 Rue Marconi, F-57070 Metz, France
| | - Michael J Wishon
- Georgia Tech-CNRS UMI 2958, Georgia Tech Lorraine, 2 Rue Marconi, F-57070 Metz, France
| | - C Y Chang
- Georgia Tech-CNRS UMI 2958, Georgia Tech Lorraine, 2 Rue Marconi, F-57070 Metz, France
| | - D S Citrin
- Georgia Tech-CNRS UMI 2958, Georgia Tech Lorraine, 2 Rue Marconi, F-57070 Metz, France
| | - A Locquet
- Georgia Tech-CNRS UMI 2958, Georgia Tech Lorraine, 2 Rue Marconi, F-57070 Metz, France
| |
Collapse
|
3
|
Saha A, Feudel U. Extreme events in FitzHugh-Nagumo oscillators coupled with two time delays. Phys Rev E 2017; 95:062219. [PMID: 28709240 DOI: 10.1103/physreve.95.062219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 06/07/2023]
Abstract
We study two identical FitzHugh-Nagumo oscillators which are coupled with one or two different time delays. If only a single-delay coupling is used, the length of the delay determines whether the synchronization manifold is transversally stable or unstable, exhibiting mixed-mode or chaotic oscillations in which the small amplitude oscillations are always in phase but the large amplitude oscillations are in phase or out of phase, respectively. For two delays we find an intricate dynamics which comprises an irregular alteration of small amplitude oscillations, in-phase and out-of-phase large amplitude oscillations, also called extreme events. This transient chaotic dynamics is sandwiched between a bubbling transition and a blowout bifurcation.
Collapse
Affiliation(s)
- Arindam Saha
- Theoretical Physics/Complex Systems, ICBM, University of Oldenburg, 26129 Oldenburg, Germany
| | - Ulrike Feudel
- Theoretical Physics/Complex Systems, ICBM, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Hramov AE, Koronovskii AA, Moskalenko OI, Zhuravlev MO, Jaimes-Reategui R, Pisarchik AN. Separation of coexisting dynamical regimes in multistate intermittency based on wavelet spectrum energies in an erbium-doped fiber laser. Phys Rev E 2016; 93:052218. [PMID: 27300891 DOI: 10.1103/physreve.93.052218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 06/06/2023]
Abstract
We propose a method for the detection and localization of different types of coexisting oscillatory regimes that alternate with each other leading to multistate intermittency. Our approach is based on consideration of wavelet spectrum energies. The proposed technique is tested in an erbium-doped fiber laser with four coexisting periodic orbits, where external noise induces intermittent switches between the coexisting states. Statistical characteristics of multistate intermittency, such as the mean duration of the phases for every oscillation type, are examined with the help of the developed method. We demonstrate strong advantages of the proposed technique over previously used amplitude methods.
Collapse
Affiliation(s)
- Alexander E Hramov
- Saratov State University, Astrakhanskaya, 83, Saratov 410012, Russia and Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054, Russia
| | - Alexey A Koronovskii
- Saratov State University, Astrakhanskaya, 83, Saratov 410012, Russia and Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054, Russia
| | - Olga I Moskalenko
- Saratov State University, Astrakhanskaya, 83, Saratov 410012, Russia and Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054, Russia
| | - Maksim O Zhuravlev
- Saratov State University, Astrakhanskaya, 83, Saratov 410012, Russia and Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054, Russia
| | - Rider Jaimes-Reategui
- Universidad de Guadalajara, Centro Universitario de los Lagos, Enrique Díaz de León 1144, Paseos de la Montaña, 47460, Lagos de Moreno, Jalisco, Mexico
| | - Alexander N Pisarchik
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid, Spain and Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato, Mexico
| |
Collapse
|
5
|
Koronovskii AA, Hramov AE, Grubov VV, Moskalenko OI, Sitnikova E, Pavlov AN. Coexistence of intermittencies in the neuronal network of the epileptic brain. Phys Rev E 2016; 93:032220. [PMID: 27078357 DOI: 10.1103/physreve.93.032220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/07/2022]
Abstract
Intermittent behavior occurs widely in nature. At present, several types of intermittencies are known and well-studied. However, consideration of intermittency has usually been limited to the analysis of cases when only one certain type of intermittency takes place. In this paper, we report on the temporal behavior of the complex neuronal network in the epileptic brain, when two types of intermittent behavior coexist and alternate with each other. We prove the presence of this phenomenon in physiological experiments with WAG/Rij rats being the model living system of absence epilepsy. In our paper, the deduced theoretical law for distributions of the lengths of laminar phases prescribing the power law with a degree of -2 agrees well with the experimental neurophysiological data.
Collapse
Affiliation(s)
- Alexey A Koronovskii
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| | - Alexander E Hramov
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| | - Vadim V Grubov
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| | - Olga I Moskalenko
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| | - Evgenia Sitnikova
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Science, Moscow, Russia
| | - Alexey N Pavlov
- Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia.,Saratov State Technical University, Politehnicheskaja 77, Saratov 410056, Russia
| |
Collapse
|
6
|
Campos-Mejía A, Pisarchik AN, Sevilla-Escoboza R, Huerta-Cuellar G, Vera-Ávila VP. Coherence enhanced intermittency in an optically injected semiconductor laser. OPTICS EXPRESS 2015; 23:10428-10434. [PMID: 25969084 DOI: 10.1364/oe.23.010428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the experimental observation of coherence enhancement of noise-induced intermittency in a semiconductor laser subject to optical injection from another laser at the boundary of the frequency-locking regime. The intermittent switches between locked and unlocked states occur more regularly at a certain value of the injecting laser pump current. A shape of probability distribution of the experimental inter-spike-interval fluctuations is used to quantitatively characterize the intermittent behavior.
Collapse
|