1
|
Yuan H, Chen H, Sun S, Li M, Liu Z, Liu L. Numerical modeling of the effects of the shape and aspect ratio of 3D curved fiber on the percolation threshold and electrical conductivity of conductive polymer composites. SOFT MATTER 2024; 20:1746-1759. [PMID: 38288782 DOI: 10.1039/d3sm01708g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
For designing conductive polymer composites (CPCs), understanding how the fiber curvature affects the percolation behavior of curved conductive fibers is essential for determining the effective electrical conductivity σeff of the CPCs. In this work, CPCs were considered as a polymer matrix filled with the random packing of overlapped curved spherocylinders. The geometries of the curved spherocylinders were defined, and inter-curved spherocylinder contact-detecting and system-spanning fiber cluster searching algorithms were developed. The finite-size-scaling method was used to explore how the aspect ratio α and bending central angle θ of a curved spherocylinder affect the percolation threshold ϕc of an overlapped curved spherocylinder system in 3D space. The findings suggest that ϕc decreases as α increases and increases initially before declining as θ increases. An empirical approximation formula was proposed to quantify the effect of the curved spherocylinder's morphology, characterized by the dimensionless excluded volume Vdex of the curved spherocylinder, on ϕc. The new rigorous bound for ϕc of the soft-curved spherocylinder system was further proposed. A random resistor network model was constructed, and the reliability of this model was validated by comparing the simulations and published data. Finally, a fitting formula was developed to assess the impacts of the normalized reduced density (η - ηc)/ηc and Vdex on the σeff of CPCs. A distinct linear correlation between σeff and (η - ηc)/ηc was constructed, denoted as σeff ∼ [(η - ηc)/ηc]t(α,θ). An empirical approximation model was proposed to establish the relationship between the fiber shape and conductivity exponent t. Our study may provide a theoretical hint for the design of CPCs.
Collapse
Affiliation(s)
- Hui Yuan
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Huisu Chen
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Shaobo Sun
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Mingqi Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.
| | - Zhiyong Liu
- School of Civil Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Lin Liu
- College of Civil and Transportation Engineering, Hohai University, Nanjing, 210098, P. R. China.
| |
Collapse
|
2
|
Yuan H, Chen H, Li M, Liu L, Liu Z. Percolation threshold and electrical conductivity of conductive polymer composites filled with curved fibers in two-dimensional space. SOFT MATTER 2023; 19:7149-7160. [PMID: 37700663 DOI: 10.1039/d3sm00963g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Quantifying the influence of fiber curvature on the percolation behavior of flexible conductive fiber and further on the electrical conductivity of conductive polymer composites (CPCs) is crucial for the design of CPCs. This study considers CPCs as a random packing of soft curved discorectangles (CDCRs) in a polymer matrix. The geometry of CDCR is developed, and an inter-CDCR contact detection algorithm is used to generate a random packing structure of CDCRs. The effects of aspect ratio α and bending central angles θ of CDCR on the percolation threshold ϕc of the overlapped CDCR system in a two-dimensional plane are then investigated using the finite-size scaling method. The result reveals that ϕc decreases monotonically as α grows and increases monotonically as θ rises. A shape-independent power law formula, denoted as ϕc = 2.2015 A-0.8172dex is developed to quantify the relationship between the Adex and ϕc. A comparison of our numerical simulations, published data, and predictions verifies the reliability and universality of the fitting model. Subsequently, a resistor network searching algorithm (RNSA) is proposed to construct the random resistor network model (RRNM). A power law model, denoted as is developed to evaluate the effects of the normalized reduced density (η - ηc)/ηc on the effective conductivity σeff of CPC. Comparing our predictions with data from the literature and our simulation verifies the reliability of our RNSA and the fitting model. This paper's methodology and findings may provide a theoretical hint for the CPC's design.
Collapse
Affiliation(s)
- Hui Yuan
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, PR China.
| | - Huisu Chen
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, PR China.
| | - Mingqi Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Lin Liu
- College of Civil and Transportation Engineering, Hohai University, Nanjing, 210098, PR China
| | - Zhiyong Liu
- School of Civil Engineering, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
3
|
|
4
|
|
5
|
Roth LK, Jaeger HM. Optimizing packing fraction in granular media composed of overlapping spheres. SOFT MATTER 2016; 12:1107-1115. [PMID: 26592541 DOI: 10.1039/c5sm02335a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
What particle shape will generate the highest packing fraction when randomly poured into a container? In order to explore and navigate the enormous search space efficiently, we pair molecular dynamics simulations with artificial evolution. Arbitrary particle shape is represented by a set of overlapping spheres of varying diameter, enabling us to approximate smooth surfaces with a resolution proportional to the number of spheres included. We discover a family of planar triangular particles, whose packing fraction of ϕ ∼ 0.73 is among the highest experimental results for disordered packings of frictionless particles. We investigate how ϕ depends on the arrangement of spheres comprising an individual particle and on the smoothness of the surface. We validate the simulations with experiments using 3D-printed copies of the simplest member of the family, a planar particle consisting of three overlapping spheres with identical radius. Direct experimental comparison with 3D-printed aspherical ellipsoids demonstrates that the triangular particles pack exceedingly well not only in the limit of large system size but also when confined to small containers.
Collapse
Affiliation(s)
- Leah K Roth
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA.
| | - Heinrich M Jaeger
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Jin W, Lu P, Liu L, Li S. Cluster and constraint analysis in tetrahedron packings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042203. [PMID: 25974480 DOI: 10.1103/physreve.91.042203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 06/04/2023]
Abstract
The disordered packings of tetrahedra often show no obvious macroscopic orientational or positional order for a wide range of packing densities, and it has been found that the local order in particle clusters is the main order form of tetrahedron packings. Therefore, a cluster analysis is carried out to investigate the local structures and properties of tetrahedron packings in this work. We obtain a cluster distribution of differently sized clusters, and peaks are observed at two special clusters, i.e., dimer and wagon wheel. We then calculate the amounts of dimers and wagon wheels, which are observed to have linear or approximate linear correlations with packing density. Following our previous work, the amount of particles participating in dimers is used as an order metric to evaluate the order degree of the hierarchical packing structure of tetrahedra, and an order map is consequently depicted. Furthermore, a constraint analysis is performed to determine the isostatic or hyperstatic region in the order map. We employ a Monte Carlo algorithm to test jamming and then suggest a new maximally random jammed packing of hard tetrahedra from the order map with a packing density of 0.6337.
Collapse
Affiliation(s)
- Weiwei Jin
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Peng Lu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Lufeng Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Jaeger HM. Celebrating Soft Matter's 10th Anniversary: toward jamming by design. SOFT MATTER 2015; 11:12-27. [PMID: 25385170 DOI: 10.1039/c4sm01923g] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In materials science, high performance is typically associated with regularity and order, while disorder and the presence of defects are assumed to lead to sub-optimal outcomes. This holds for traditional solids such as crystals as well as for many types of nanoscale devices. However, there are circumstances where disorder can be harnessed to achieve performance not possible with approaches based on regularity. Recent research has shown opportunities specifically for soft matter. There, the phenomenon of jamming leads to unique emergent behavior that enables disordered, amorphous systems to switch reversibly between solid-like rigidity and fluid-like plasticity. This makes it possible to envision materials that can change stiffness or even shape adaptively. We review some of the progress in this direction, discussing examples where jamming has been explored from micro to macro scales in colloidal systems, suspensions, granular-materials-enabled soft robotics, and architecture. We focus in particular on how the jammed aggregate state can be tailored by controlling particle level properties and discuss very recent ideas that provide an important first step toward actual design of specifically targeted jamming behavior.
Collapse
Affiliation(s)
- Heinrich M Jaeger
- James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Athanassiadis AG, Miskin MZ, Kaplan P, Rodenberg N, Lee SH, Merritt J, Brown E, Amend J, Lipson H, Jaeger HM. Particle shape effects on the stress response of granular packings. SOFT MATTER 2014; 10:48-59. [PMID: 24651965 DOI: 10.1039/c3sm52047a] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.
Collapse
Affiliation(s)
- Athanasios G Athanassiadis
- James Franck Institute & Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gravish N, Franklin SV, Hu DL, Goldman DI. Entangled granular media. PHYSICAL REVIEW LETTERS 2012; 108:208001. [PMID: 23003190 DOI: 10.1002/9781119220510.ch17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Indexed: 05/27/2023]
Abstract
We study the geometrically induced cohesion of ensembles of granular "u particles" that mechanically entangle through particle interpenetration. We vary the length-to-width ratio l/w of the u particles and form them into freestanding vertical columns. In a laboratory experiment, we monitor the response of the columns to sinusoidal vibration (with peak acceleration Γ). Column collapse occurs in a characteristic time τ which follows the relation τ∝exp(Γ/Δ). Δ resembles an activation energy and is maximal at intermediate l/w. A simulation reveals that optimal strength results from competition between packing and entanglement.
Collapse
Affiliation(s)
- Nick Gravish
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|