1
|
Chaki S, Román-Manso B, Senatus L, Lewis JA, Schweizer KS. Theoretical study of the impact of dilute nanoparticle additives on the shear elasticity of dense colloidal suspensions. SOFT MATTER 2025; 21:1731-1747. [PMID: 39918291 DOI: 10.1039/d4sm01193g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Motivated by basic issues in soft matter physics and new experimental work on granule-nanoparticle mixtures, we systematically apply naive mode coupling theory with accurate microstructural input to investigate the elastic shear modulus of highly size asymmetric, dense, chemically complex, colloid-nanoparticle mixtures. Our analysis spans four equilibrium microstructural regimes: (i) entropic depletion induced colloid clustering, (ii) discrete adsorbed nanoparticle layers that induce colloid spatial dispersion, (iii) nanoparticle-mediated tight bridging network formation, and (iv) colloidal contact aggregation via direct attractions. Each regime typically displays a distinctive mechanical response to changing colloid-nanoparticle size ratio, packing fractions, and the strength and spatial range of interparticle attractive and repulsive interactions. Small concentrations of nanoparticles can induce orders of magnitude elastic reinforcements typically involving single or double exponential growth with increasing colloid and/or nanoparticle packing fraction. Depending on the system, the elementary stress scale can be controlled by the colloid volume, the nanoparticle volume, or a combination of both. Connections between local microstructural organization and the mixture elastic shear modulus are established. The collective structure factor of the relatively dilute nanoparticle subsystem exhibits strong spatial ordering and large osmotic concentration fluctuations imprinted by the highly correlated dense colloidal subsystem. The relevance of the theoretical results for experimental mixtures with large size asymmetry, particularly in the context of 3D ink printing and additive manufacturing, are discussed.
Collapse
Affiliation(s)
- Subhasish Chaki
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Benito Román-Manso
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Larissa Senatus
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jennifer A Lewis
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Attia D, Levi-Kalisman Y, Bitton R, Yerushalmi-Rozen R. Gum Arabic induced assembly of cellulose nanocrystals in aqueous media. NANOSCALE ADVANCES 2025:d4na00981a. [PMID: 39886611 PMCID: PMC11775582 DOI: 10.1039/d4na00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Entropy-driven assembly of nematic liquid-crystal phases of cellulose nanocrystals (SCNCs) in aqueous suspensions results in the emergence of a cholesteric liquid crystalline phase (N* phase). We report that a solvated, non-adsorbing, highly branched natural polysaccharide, Gum Arabic (GA), strongly affects the assembly of the SCNCs and modifies the phase diagram: GA leads to significant crowding of the SCNC rods and induces a new liquid-liquid phase transition, where SCNC-rich and GA-rich droplets coexist. The solvated GA does not induce coagulation or gelation of the suspended SCNCs (at low concentrations of 1-3 wt% of GA). In the SCNC-rich droplets, finite-sized nematic nano-islands assemble and further evolve into cholesteric tactoids and nucleate the formation of the N* phase at significantly lower concentration (about 1.5 wt%) than in GA-free suspensions. We observe that the inter-particle distance and the chiral pitch of the N* phase are determined by the concentration of GA (for a given SCNC concentration). The resulting mesophases are characterized via transmission electron microscopy at cryogenic temperatures (cryo-TEM), small-angle X-ray scattering (SAXS), and polarized optical microscopy (POM). Our findings indicate that GA can be used to tune the phase diagram and optical properties of SCNC suspensions, and overcome kinetic barriers that lead to gelation or kinetic arrest.
Collapse
Affiliation(s)
- David Attia
- Department of Chemical Engineering, The Ilse Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev Beer Sheva 84105 Israel
| | - Yael Levi-Kalisman
- The Center for Nanoscience and Nanotechnology, The Hebrew University Jerusalem 91904 Israel
| | - Ronit Bitton
- Department of Chemical Engineering, The Ilse Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev Beer Sheva 84105 Israel
- The Ilse Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Rachel Yerushalmi-Rozen
- Department of Chemical Engineering, The Ilse Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev Beer Sheva 84105 Israel
- The Ilse Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
3
|
Pedrozo-Romero JJ, Pérez-Ángel G. Depletion forces in dense mixtures of spheres and rods. J Chem Phys 2024; 160:134502. [PMID: 38557848 DOI: 10.1063/5.0189387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
We evaluate depletion forces in molecular dynamics simulation of a binary mixture of spheres (depleted particles) and rods (depletant particles) for a wide range of densities for both species. This evaluation was carried out using a recently proposed least squares fitting algorithm. We found that the restriction of the rods' rotational degrees of freedom, when the distance between two spheres is less than the rods length, creates a shallow, and apparently linear, attractive force ramp. For intersphere distances smaller than the rods' diameter, a much stronger attractive force is found, and a large repulsive barrier appears between these aforementioned regimes, roughly at the distance of the rods' thickness. The evaluated forces are validated via a comparison of the pairwise correlation functions obtained from molecular dynamics simulation of a mono-disperse sphere fluid, using the evaluated effective forces, against the original (full system) pairwise correlation functions. Agreement is excellent. We also record the angular pairwise correlation function, using the P2(x) Legendre polynomial, and find that for high densities of both species, a local nematic ordering starts to appear. This nematic order may be a factor in the small differences found between original and effective pairwise correlation functions at high densities of rods.
Collapse
Affiliation(s)
- Jorge J Pedrozo-Romero
- CINVESTAV Unidad Mérida, Departamento de Física Aplicada, A.P. 73 "Cordemex," 97310 Mérida, Yucatán, Mexico
| | - Gabriel Pérez-Ángel
- CINVESTAV Unidad Mérida, Departamento de Física Aplicada, A.P. 73 "Cordemex," 97310 Mérida, Yucatán, Mexico
| |
Collapse
|
4
|
Shi G, Schweizer KS. Theory of the center-of-mass diffusion and viscosity of microstructured and variable sequence copolymer liquids. SOFT MATTER 2023; 19:8893-8910. [PMID: 37955602 DOI: 10.1039/d3sm01193c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Biomolecular condensates formed through the phase separation of proteins and nucleic acids are widely observed, offering a fundamental means of organizing intracellular materials in a membrane-less fashion. Traditionally, these condensates have been regarded as homogeneous isotropic liquids. However, in analogy with some synthetic copolymer systems, our recent theoretical research has demonstrated that model biomolecular condensates can exhibit a microemulsion-like internal structure, contingent upon the specific sequence, inter-chain site-site interactions, and concentrated phase polymer density. Motivated by these considerations, here we present a microscopic dynamical theory for the self-diffusion constant and viscosity of a simpler class of model systems - concentrated unentangled A/B regular multiblock copolymer solutions. Our approach integrates static equilibrium local and microdomain scale structural information obtained from PRISM integral equation theory and the time evolution of the autocorrelation function of monomer scale forces at the center-of-mass level to determine the polymer diffusion constant and viscosity in a weak caging regime far from a glass or gel transition. We focus on regular multi-block systems both for simplicity and for its relevance to synthetic macromolecular science. The impact of sequence and inter-chain attraction strength on the slowing down of copolymer mass transport and flow due to local clustering enhanced collisional friction and emergent microdomain scale ordering are established. Analytic analysis and metrics employed in the study of biomolecular condensates are employed to identify key order parameters that quantity how attractive forces, packing structure, multiblock sequence, and copolymer density determine dynamical slowing down above and below the crossover to a fluctuating polymeric microemulsion state.
Collapse
Affiliation(s)
- Guang Shi
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA.
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Ma XJ, Zhang R. Cooperative activated hopping dynamics in binary glass-forming liquids: effects of the size ratio, composition, and interparticle interactions. SOFT MATTER 2023. [PMID: 37317997 DOI: 10.1039/d3sm00312d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Slow dynamics in supercooled and glassy liquids is an important research topic in soft matter physics. Compared to the traditionally focused one-component systems, glassy dynamics in mixture systems adds in a rich set of new complexities, which are fundamentally interesting and also relevant for many technological applications. In this paper, we apply the recently developed self-consistent cooperative hopping theory (SCCHT) to systematically investigate the effects of the size ratio, composition and interparticle interactions on the cooperative activated hopping dynamics of matrix (in larger size) and penetrant (in smaller size) particles in varied binary sphere mixture model systems, with a specific focus on ultrahigh mixture packing fractions that mimic the deeply supercooled glass transition conditions for molecular/polymeric mixture materials. Analysis shows that in these high activation barrier cases, the long-range elastic distortion associated with a matrix particle hopping over its cage confinement always generates an elastic barrier of a nonnegligible magnitude, although the ratio between the elastic barrier and local barrier contribution is sensitively dependent on all three mixture-specific system factors considered in this work. SCCHT predicts two general scenarios of penetrant-matrix cooperative activated hopping dynamics: matrix/penetrant co-hopping (regime 1) or the penetrant mean barrier hopping time shorter than that of the matrix (regime 2). Increasing the penetrant-to-matrix size ratio or the penetrant-matrix cross-attraction strength is found to universally enlarge the composition window of regime 1. Diverse dynamical properties characterising different aspects of the cooperative activated hopping process, including the penetrant and matrix transient localization lengths, penetrant and matrix hopping jump distances, different types of local and elastic activated barriers, and matrix long-time diffusivity, relaxation time and dynamic fragility are quantitatively studied against a wide range of variations over the three system factors. Of particular interest is the universal "anti-plasticization" phenomenon achievable for sufficiently strong cross-attractive interactions. The prospects this work opens for the exploration of a wide variety of polymer-based mixture materials are briefly discussed at the end.
Collapse
Affiliation(s)
- Xiao-Juan Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Zhang B, Li J, Hu J, Liu L. Theory of polymer diffusion in polymer-nanoparticle mixtures: effect of nanoparticle concentration and polymer length. SOFT MATTER 2021; 17:4632-4642. [PMID: 33949610 DOI: 10.1039/d1sm00226k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dynamics of polymer-nanoparticle (NP) mixtures, which involves multiple scales and system-specific variables, has posed a long-standing challenge on its theoretical description. In this paper, we construct a microscopic theory for polymer diffusion in mixtures based on a combination of the generalized Langevin equation, mode-coupling approach, and polymer physics ideas. The parameter-free theory has an explicit expression and remains tractable on a pair correlation level with system-specific equilibrium structures as input. Taking a minimal polymer-NP mixture as an example, our theory correctly captures the dependence of polymer diffusion on NP concentration and average interparticle distance. Importantly, the polymer diffusion exhibits a power law decay as the polymer length increases at dense NPs and/or a long chain, which marks the emergence of entanglement-like motion. The work provides a first-principles theoretical foundation to investigate dynamic problems in diverse polymer nanocomposites.
Collapse
Affiliation(s)
- Bokai Zhang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jian Li
- Department of Physics and Electronic Engineering, Heze University, Heze 274015, China
| | - Juanmei Hu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Lei Liu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Zhou Y, Schweizer KS. Theory of microstructure-dependent glassy shear elasticity and dynamic localization in melt polymer nanocomposites. J Chem Phys 2020; 153:114901. [PMID: 32962384 DOI: 10.1063/5.0021954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We present an integrated theoretical study of the structure, thermodynamic properties, dynamic localization, and glassy shear modulus of melt polymer nanocomposites (PNCs) that spans the three microstructural regimes of entropic depletion induced nanoparticle (NP) clustering, discrete adsorbed layer driven NP dispersion, and polymer-mediated bridging network. The evolution of equilibrium and dynamic properties with NP loading, total packing fraction, and strength of interfacial attraction is systematically studied based on a minimalist model. Structural predictions of polymer reference interaction site model integral equation theory are employed to establish the rich behavior of the interfacial cohesive force density, surface excess, and a measure of free volume as a function of PNC variables. The glassy dynamic shear modulus is predicted to be softened, reinforced, or hardly changed relative to the pure polymer melt depending on system parameters, as a result of the competing and qualitatively different influences of interfacial cohesion (physical bonding), free volume, and entropic depletion on dynamic localization and shear elasticity. The localization of polymer segments is the dominant factor in determining bulk PNC softening and reinforcement effects for moderate to strong interfacial attractions, respectively. While in the athermal entropy-dominated regime, the primary origin of mechanical reinforcement is the stress stored in the aggregated NP subsystem. The PNC shear modulus is often qualitatively correlated with the segment localization length but with notable exceptions. The present work provides the foundation for developing a theory of segmental relaxation, Tg changes, and collective NP dynamics in PNCs based on a self-consistent treatment of the cooperative activated motions of segments and NPs.
Collapse
Affiliation(s)
- Yuxing Zhou
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Ghosh A, Schweizer KS. Microscopic Theory of the Effect of Caging and Physical Bonding on Segmental Relaxation in Associating Copolymer Liquids. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Müller N, Vogel M. Relation between concentration fluctuations and dynamical heterogeneities in binary glass-forming liquids: A molecular dynamics simulation study. J Chem Phys 2019; 150:064502. [DOI: 10.1063/1.5059355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Niels Müller
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
10
|
Zhang R, Schweizer KS. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures. J Phys Chem B 2018; 122:3465-3479. [DOI: 10.1021/acs.jpcb.7b10568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Xu WS, Duan X, Sun ZY, An LJ. Glass formation in a mixture of hard disks and hard ellipses. J Chem Phys 2015; 142:224506. [DOI: 10.1063/1.4922379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Li-Jia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|