1
|
Fazelpour F, Daniels KE. Controlling rheology via boundary conditions in dense granular flows. SOFT MATTER 2023; 19:2168-2175. [PMID: 36852754 DOI: 10.1039/d2sm00683a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Boundary shape, particularly roughness, strongly controls the amount of wall slip in dense granular flows. In this paper, we aim to quantify and understand which aspects of a dense granular flow are controlled by the boundary conditions, and to incorporate these observations into a cooperative nonlocal model characterizing slow granular flows. To examine the influence of boundary properties, we perform experiments on a quasi-2D annular shear cell with a rotating inner wall and a fixed outer wall; the latter is selected among 6 walls with various roughnesses, local concavity, and compliance. We find that we can successfully capture the full flow profile using a single set of empirically determined model parameters, with only the wall slip velocity set by direct observation. Through the use of photoelastic particles, we observe how the internal stresses fluctuate more for rougher boundaries, corresponding to a lower wall slip, and connect this observation to the propagation of nonlocal effects originating from the wall. Our measurements indicate a universal relationship between dimensionless fluidity and velocity.
Collapse
Affiliation(s)
- Farnaz Fazelpour
- Department of Physics, North Carolina State University, Raleigh, NC, USA.
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Yuu S, Umekage T. Onset mechanism of granular avalanches in inclining layers using a continuum model. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Kramár M, Cheng C, Basak R, Kondic L. On intermittency in sheared granular systems. SOFT MATTER 2022; 18:3583-3593. [PMID: 35475456 DOI: 10.1039/d1sm01780b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We consider a system of granular particles, modeled by two dimensional frictional soft elastic disks, that is exposed to externally applied time-dependent shear stress in a planar Couette geometry. We concentrate on the external forcing that produces intermittent dynamics of stick-slip type. In this regime, the top wall remains almost at rest until the applied stress becomes sufficiently large, and then it slips. We focus on the evolution of the system as it approaches a slip event. Our main finding is that there are two distinct groups of measures describing system behavior before a slip event. The first group consists of global measures defined as system-wide averages at a fixed time. Typical examples of measures in this group are averages of the normal or tangent forces acting between the particles, system size and number of contacts between the particles. These measures do not seem to be sensitive to an approaching slip event. On average, they tend to increase linearly with the force pulling the spring. The second group consists of the time-dependent measures that quantify the evolution of the system on a micro (particle) or mesoscale. Measures in this group first quantify the temporal differences between two states and only then aggregate them to a single number. For example, Wasserstein distance quantitatively measures the changes of the force network as it evolves in time while the number of broken contacts quantifies the evolution of the contact network. The behavior of the measures in the second group changes dramatically before a slip event starts. They increase rapidly as a slip event approaches, indicating a significant increase in fluctuations of the system before a slip event is triggered.
Collapse
Affiliation(s)
- Miroslav Kramár
- Department of Mathematics, University of Oklahoma, 601 Elm Avenue, Norman, OK 73019, USA.
| | - Chao Cheng
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Rituparna Basak
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Lou Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| |
Collapse
|
4
|
Dossow L, Kessler R, Sperl M, Born P. Dynamic light scattering from single macroscopic particles. APPLIED OPTICS 2021; 60:10160-10167. [PMID: 34807123 DOI: 10.1364/ao.441093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Here we present a methodology to characterize the light intensity fluctuations that arise from rotations of individual granular particles. We describe a setup for dynamic light scattering measurements on individual macroscopic particles and isolate the contribution from rotations of the individual particles to the obtained correlation functions. The results show that rotation of granular particles results in a significant contribution to scattered light intensity fluctuations, a phenomenon not considered so far in dynamic light scattering measurements on fluidized granular media. The results presented here may thus form the basis for an extended light scattering methodology for granular media, and improve the selection of granular particles according to their dynamic light scattering signal.
Collapse
|
5
|
Deshpande NS, Furbish DJ, Arratia PE, Jerolmack DJ. The perpetual fragility of creeping hillslopes. Nat Commun 2021; 12:3909. [PMID: 34162848 PMCID: PMC8222271 DOI: 10.1038/s41467-021-23979-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Soil creeps imperceptibly but relentlessly downhill, shaping landscapes and the human and ecological communities that live within them. What causes this granular material to 'flow' at angles well below repose? The unchallenged dogma is churning of soil by (bio)physical disturbances. Here we experimentally render slow creep dynamics down to micron scale, in a laboratory hillslope where disturbances can be tuned. Surprisingly, we find that even an undisturbed sandpile creeps indefinitely, with rates and styles comparable to natural hillslopes. Creep progressively slows as the initially fragile pile relaxes into a lower energy state. This slowing can be enhanced or reversed with different imposed disturbances. Our observations suggest a new model for soil as a creeping glass, wherein environmental disturbances maintain soil in a perpetually fragile state.
Collapse
Affiliation(s)
- Nakul S. Deshpande
- grid.25879.310000 0004 1936 8972Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA USA
| | - David J. Furbish
- grid.152326.10000 0001 2264 7217Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Civil and Environmental Engineering, Vanderbilt University, Nashville, TN USA
| | - Paulo E. Arratia
- grid.25879.310000 0004 1936 8972Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA USA ,grid.152326.10000 0001 2264 7217Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN USA
| | - Douglas J. Jerolmack
- grid.25879.310000 0004 1936 8972Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Mechanical Engineering & Applied Mechanics, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
6
|
Yuu S, Umekage T. Mechanism of avalanche precursors in inclining granular layers using a continuum model obtained by discrete element method. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Oger L, Tannoury CE, Delannay R, Le Gonidec Y, Ippolito I, Roht YL, Gómez-Arriaran I. Dynamic behavior of humid granular avalanches: Optical measurements to characterize the precursor activity. Phys Rev E 2020; 101:022902. [PMID: 32168568 DOI: 10.1103/physreve.101.022902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Laboratory study of slope stability of granular media remains a challenge for modeling, understanding, and predicting natural hazards, such as avalanches and landslides, precursory signs of which are controlled by numerous physical parameters. The present work focuses on the impact of the humidity, in the range of 40-90%, on the stability of monodisperse dense packings of spherical beads. The beads are in a transparent box that is slowly and continuously tilted and allows simultaneous top and lateral optical measurements of global displacements of grains at the surface, defined as precursors. Humidity increases the cohesion between the grains. By performing successive avalanches that destabilize deeper granular layers, we assess the role of the exposure time to the high humidity rates in the diffusion process to reach the hygroscopic equilibrium inside the packing. We highlight an increase of the stability and first precursor angles, associated to a constant angle increment between two consecutive precursors, with a dependency with both the diameter (0.2,0.5, and 0.75 mm) and the material (glass and polystyrene) of the grains.
Collapse
Affiliation(s)
- Luc Oger
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Claude El Tannoury
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Renaud Delannay
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Yves Le Gonidec
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, F-35000 Rennes, France
| | - Irene Ippolito
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Av. Paseo Colón 850, Buenos Aires, Argentina
| | - Yanina Lucrecia Roht
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Av. Paseo Colón 850, Buenos Aires, Argentina
| | - Iñaki Gómez-Arriaran
- ENEDI, Department of Thermal Engineering, University of the Basque Country-UPV/EHU, Spain
| |
Collapse
|
8
|
Two types of particle dynamics in the passive layer of a granular bed composed of irregular particles. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Cipelletti L, Martens K, Ramos L. Microscopic precursors of failure in soft matter. SOFT MATTER 2020; 16:82-93. [PMID: 31720666 DOI: 10.1039/c9sm01730e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanical properties of soft matter are of great importance in countless applications, in addition of being an active field of academic research. Given the relative ease with which soft materials can be deformed, their non-linear behavior is of particular relevance. Large loads eventually result in material failure. In this Perspective article, we discuss recent work aiming at detecting precursors of failure by scrutinizing the microscopic structure and dynamics of soft systems under various conditions of loading. In particular, we show that the microscopic dynamics is a powerful indicator of the ultimate fate of soft materials, capable of unveiling precursors of failure up to thousands of seconds before any macroscopic sign of weakening.
Collapse
|
10
|
Fernández Aguirre I, Jagla EA. Critical exponents of the yielding transition of amorphous solids. Phys Rev E 2018; 98:013002. [PMID: 30110738 DOI: 10.1103/physreve.98.013002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 06/08/2023]
Abstract
We investigate numerically the yielding transition of a two-dimensional model amorphous solid under external shear. We use a scalar model in terms of values of the total local strain, derived from the full (tensorial) description of the elastic interactions in the system, in which plastic deformations are accounted for by introducing a stochastic "plastic disorder" potential. This scalar model is seen to be equivalent to a collection of Prandtl-Tomlinson particles, which are coupled through an Eshelby quadrupolar kernel. Numerical simulations of this scalar model reveal that the strain rate versus stress curve, close to the critical stress, is of the form γ[over ̇]∼(σ-σ_{c})^{β}. Remarkably, we find that the value of β depends on details of the microscopic plastic potential used, confirming and giving additional support to results previously obtained with the full tensorial model. To rationalize this result, we argue that the Eshelby interaction in the scalar model can be treated to a good approximation in a sort of "dynamical" mean field, which corresponds to a Prandtl-Tomlinson particle that is driven by the applied strain rate in the presence of a stochastic noise generated by all other particles. The dynamics of this Prandtl-Tomlinson particle displays different values of the β exponent depending on the analytical properties of the microscopic potential, thus giving support to the results of the numerical simulations. Moreover, we find that other critical exponents that depend on details of the dynamics show also a dependence with the form of the disorder, while static exponents are independent of the details of the disorder. Finally, we show how our scalar model relates to other elastoplastic models and to the widely used mean-field version known as the Hébraud-Lequeux model.
Collapse
Affiliation(s)
- I Fernández Aguirre
- Comisión Nacional de Energía Atómica, Instituto Balseiro (UNCu), and CONICET Centro Atómico Bariloche, (8400) Bariloche, Argentina
| | - E A Jagla
- Comisión Nacional de Energía Atómica, Instituto Balseiro (UNCu), and CONICET Centro Atómico Bariloche, (8400) Bariloche, Argentina
| |
Collapse
|
11
|
Abstract
Soil is apparently solid as it moves downhill at glacial speeds, but can also liquefy from rain or earthquakes. This behavior is actually similar to that of glass, which creeps very slowly at low temperatures but becomes a liquid at higher temperatures. We develop a discrete granular-physics hillslope model, which shows that the similarities between soil and glass are more than skin deep. Despite the geologic and climatic complexity of natural environments, the shapes and erosion rates of hillsides over geologic timescales appear to be governed by generic dynamics characteristic of disordered and amorphous materials. Soil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes. We find creep for slopes below a critical gradient, where average particle velocity (sediment flux) increases exponentially with friction coefficient (gradient). At critical gradient there is a continuous transition to a dense-granular flow rheology. Slow earthflows and landslides thus exhibit glassy dynamics characteristic of a wide range of disordered materials; they are described by a two-phase flux equation that emerges from grain-scale friction alone. This glassy model reproduces topographic profiles of natural hillslopes, showing its promise for predicting hillslope evolution over geologic timescales.
Collapse
|
12
|
Microscopic dynamics and failure precursors of a gel under mechanical load. Proc Natl Acad Sci U S A 2018; 115:3587-3592. [PMID: 29555776 DOI: 10.1073/pnas.1717403115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Material failure is ubiquitous, with implications from geology to everyday life and material science. It often involves sudden, unpredictable events, with little or no macroscopically detectable precursors. A deeper understanding of the microscopic mechanisms eventually leading to failure is clearly required, but experiments remain scarce. Here, we show that the microscopic dynamics of a colloidal gel, a model network-forming system, exhibit dramatic changes that precede its macroscopic failure by thousands of seconds. Using an original setup coupling light scattering and rheology, we simultaneously measure the macroscopic deformation and the microscopic dynamics of the gel, while applying a constant shear stress. We show that the network failure is preceded by qualitative and quantitative changes of the dynamics, from reversible particle displacements to a burst of irreversible plastic rearrangements.
Collapse
|
13
|
Amon A, Blanc B, Géminard JC. Avalanche precursors in a frictional model. Phys Rev E 2018; 96:033004. [PMID: 29346911 DOI: 10.1103/physreve.96.033004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/07/2022]
Abstract
We present a one-dimensional numerical model based on elastically coupled sliders on a frictional incline of variable tilt. This very simple approach makes it possible to study the precursors to the avalanche and to provide a rationalization of different features that have been observed in experiments. We provide a statistical description of the model leading to master equations describing the state of the system as a function of the angle of inclination. Our central results are the reproduction of large-scale regular events preceding the avalanche, on the one hand, and an analytical approach providing an internal threshold for the outbreak of rearrangements before the avalanche in the system, on the other hand.
Collapse
Affiliation(s)
- Axelle Amon
- Institut de Physique de Rennes, UMR UR1-CNRS 6251, Université de Rennes 1, Campus de Beaulieu, F-35042 RENNES Cedex, France
| | - Baptiste Blanc
- Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure, CNRS, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | - Jean-Christophe Géminard
- Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure, CNRS, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| |
Collapse
|
14
|
Amon A, Mikhailovskaya A, Crassous J. Spatially resolved measurements of micro-deformations in granular materials using diffusing wave spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:051804. [PMID: 28571455 DOI: 10.1063/1.4983048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This article is a tutorial on the practical implementation of a method of measurement of minute deformations based on multiple scattering. This technique has been recently developed and has proven to give new insights into the spatial repartition of strain in a granular material. We provide here the basics to understand the method by giving a synthetic review on diffusing wave spectroscopy and multiple scattering in granular materials. We detail a simple experiment using standard lab equipment to pedagogically demonstrate the implementation of the method. Finally we give a few examples of measurements that have been obtained in other works to discuss the potential of the method.
Collapse
Affiliation(s)
- Axelle Amon
- Université de Rennes 1, Institut de Physique de Rennes (UMR UR1-CNRS 6251), Bât. 11A, Campus de Beaulieu, F-35042 Rennes, France
| | - Alesya Mikhailovskaya
- Université de Rennes 1, Institut de Physique de Rennes (UMR UR1-CNRS 6251), Bât. 11A, Campus de Beaulieu, F-35042 Rennes, France
| | - Jérôme Crassous
- Université de Rennes 1, Institut de Physique de Rennes (UMR UR1-CNRS 6251), Bât. 11A, Campus de Beaulieu, F-35042 Rennes, France
| |
Collapse
|
15
|
Yang H, Jiang G, Saw H, Davies C, Biggs M, Zivkovic V. Granular dynamics of cohesive powders in a rotating drum as revealed by speckle visibility spectroscopy and synchronous measurement of forces due to avalanching. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Chaudhuri P, Horbach J. Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:040301. [PMID: 25375422 DOI: 10.1103/physreve.90.040301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 06/04/2023]
Abstract
Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Gravish N, Goldman DI. Effect of volume fraction on granular avalanche dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032202. [PMID: 25314432 DOI: 10.1103/physreve.90.032202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 06/04/2023]
Abstract
We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)<0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)<0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor flow at ϕ(0)-ϕ(c)>0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.
Collapse
Affiliation(s)
- Nick Gravish
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Daniel I Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
18
|
Nicolas A, Barrat JL. A mesoscopic model for the rheology of soft amorphous solids, with application to microchannel flows. Faraday Discuss 2013; 167:567-600. [PMID: 24640512 DOI: 10.1039/c3fd00067b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied a mesoscopic model for the flow of amorphous solids. The model is based on key features identified at the microscopic level, namely periods of elastic deformation interspersed with localised rearrangements of particles that induce long-range elastic deformations. These long-range deformations are derived following a continuum mechanics approach, in the presence of solid boundaries, and are included in full in the model. Indeed, they mediate spatial cooperativity in the flow, whereby a localised rearrangement may lead a distant region to yield. In particular, we have simulated a channel flow and found manifestations of spatial cooperativity that are consistent with published experimental observations for concentrated emulsions in microchannels. Two categories of effects are distinguished. On the one hand, the coupling of regions subject to different shear rates, for instance, leads to finite shear rate fluctuations in the seemingly unsheared "plug" in the centre of the channel. On the other hand, there is convincing experimental evidence of a specific rheology near rough walls. We discuss the diverse possible physical origins for this effect, and we suggest that it may be associated with the bumps of particles into surface asperities as they slide along the wall.
Collapse
|