1
|
Parmar VRS, Chanda S, Sivasubramaniam SVB, Bandyopadhyay R. Using optical tweezer electrophoresis to investigate clay nanoplatelet adsorption on Latex microspheres in aqueous media. SOFT MATTER 2025. [PMID: 39820612 DOI: 10.1039/d4sm01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The adsorption of charged clay nanoplatelets plays an important role in stabilizing emulsions by forming a barrier around the emulsion droplets and preventing coalescence. In this work, the adsorption of charged clay nanoplatelets on a preformed Latex microsphere in an aqueous medium is investigated at high temporal resolution using optical tweezer-based single-colloid electrophoresis. Above a critical clay concentration, charged clay nanoplatelets in an aqueous medium self-assemble gradually to form gel-like networks that become denser with increasing medium salinity. In a previous publication [R. Biswas et. al., Soft Matter, 2023, 19, 24007-2416], some of us had demonstrated that a Latex microsphere, optically trapped in a clay gel medium, is expected to attach to the network strands of the gel. In the present contribution, we show that for different ionic conditions of the suspending medium, the adsorption of clay nanoplatelets increases the effective surface charge on an optically trapped Latex microsphere while also enhancing the drag experienced by the latter. Besides the ubiquitous contribution of non-electrostatic dispersion forces in driving the adsorption process, we demonstrate the presence of an electrostatically-driven adsorption mechanism when the microsphere was optically trapped in a clay gel. These observations are qualitatively verified via cryogenic field emission scanning electron microscopy and are useful in achieving colloidal stabilisation, for example, during the preparation of clay-armoured Latex particles in Pickering emulsion polymerisation.
Collapse
Affiliation(s)
- Vaibhav Raj Singh Parmar
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | - Sayantan Chanda
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | | | - Ranjini Bandyopadhyay
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| |
Collapse
|
2
|
Mao Y, Nielsen P, Ali J. Passive and Active Microrheology for Biomedical Systems. Front Bioeng Biotechnol 2022; 10:916354. [PMID: 35866030 PMCID: PMC9294381 DOI: 10.3389/fbioe.2022.916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo. Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon.
Collapse
Affiliation(s)
- Yating Mao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Paige Nielsen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
- National High Magnetic Field Laboratory, Tallahassee, FL, United States
| |
Collapse
|
3
|
Singh K, Rabin Y. Sequence effects on internal structure of droplets of associative polymers. Biophys J 2020; 120:1210-1218. [PMID: 32937111 DOI: 10.1016/j.bpj.2020.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) can form liquid-like membraneless organelles, gels, and fibers in cells and in vitro. In this study, we propose a simple model of IDPs as associative polymers in poor solvent and explore the formation of transient liquid droplets and their transformation into solid-like aggregates. We use Langevin dynamics simulations of short polymers with two stickers placed symmetrically along their contour to study the effect of the primary sequence of these polymers on their organization inside condensed droplets. We observe that the shape, size, and number of sticker clusters inside the droplet change from a long cylindrical fiber to many compact clusters as one varies the location of stickers along the chain contour. Aging caused by the conversion of intramoleclular to intermolecular associations is observed in droplets of telechelic polymers but not for other sequences of associating polymers. The relevance of our results to condensates of IDPs is discussed.
Collapse
Affiliation(s)
- Kulveer Singh
- Institute of Nanotechnology and Advanced Materials, Department of Physics, Bar-Ilan University, Ramat Gan, Israel.
| | - Yitzhak Rabin
- Institute of Nanotechnology and Advanced Materials, Department of Physics, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
4
|
Affiliation(s)
- Kulveer Singh
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yitzhak Rabin
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
5
|
Taghvaee T, Donthula S, Rewatkar PM, Majedi Far H, Sotiriou-Leventis C, Leventis N. K-Index: A Descriptor, Predictor, and Correlator of Complex Nanomorphology to Other Material Properties. ACS NANO 2019; 13:3677-3690. [PMID: 30839204 DOI: 10.1021/acsnano.9b00396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Morphology is a qualitative property of nanostructured matter and is articulated by visual inspection of micrographs. For deterministic procedures that relate nanomorphology to synthetic conditions, it is necessary to express nano- and microstructures numerically. Selecting polyurea aerogels as a model system with demonstrated potential for rich nanomorphology and guided by a statistical design-of-experiments model, we prepared a large array of materials (208) with identical chemical composition but quite different nanostructures. By reflecting on SEM imaging, it was realized that our first preverbal impression about a nanostructure is related to its openness and texture; the former is quantified by porosity ( Π), and the latter is oftentimes related to hydrophobicity, which, in turn, is quantified by the contact angle (θ) of water droplets resting on the material. Herewith, the θ-to-Π ratio is referred to as the K-index, and it was noticed that all polyurea samples of this study could be put in eight K-index groups with separate nanomorphologies ranging from caterpillar-like assemblies of nanoparticles, to thin nanofibers, to cocoon-like structures, to large bald microspheres. A first validation of the K-index as a morphology descriptor was based on compressing samples to different strains: it was observed that as the porosity decreases, the water-contact angle decreases proportionally, and thereby the K-index remains constant. The predictive power of the K-index was demonstrated with 20 polyurea aerogels prepared in 8 binary solvent systems. Subsequently, several material properties were correlated to nanomorphology through the K-index and that, in turn, provided insight about the root cause of the diversity of the nanostructure in polyurea aerogels. Finally, using response surface methodology, K-indexes and other material properties of practical interest were correlated to the monomer, water, and catalyst concentrations as well as the three Hansen solubility parameters of the sol. That enabled the synthesis of materials with up to six prescribed properties at a time, including nanomorphology, bulk density, BET surface area, elastic modulus, ultimate compressive strength, and thermal conductivity.
Collapse
Affiliation(s)
- Tahereh Taghvaee
- Department of Chemistry , Missouri University of Science and Technology , Rolla , Missouri 65409 , United States
| | - Suraj Donthula
- Department of Chemistry , Missouri University of Science and Technology , Rolla , Missouri 65409 , United States
| | - Parwani M Rewatkar
- Department of Chemistry , Missouri University of Science and Technology , Rolla , Missouri 65409 , United States
| | - Hojat Majedi Far
- Department of Chemistry , Missouri University of Science and Technology , Rolla , Missouri 65409 , United States
| | - Chariklia Sotiriou-Leventis
- Department of Chemistry , Missouri University of Science and Technology , Rolla , Missouri 65409 , United States
| | - Nicholas Leventis
- Department of Chemistry , Missouri University of Science and Technology , Rolla , Missouri 65409 , United States
| |
Collapse
|
6
|
Narinder N, Bechinger C, Gomez-Solano JR. Memory-Induced Transition from a Persistent Random Walk to Circular Motion for Achiral Microswimmers. PHYSICAL REVIEW LETTERS 2018; 121:078003. [PMID: 30169097 DOI: 10.1103/physrevlett.121.078003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/29/2018] [Indexed: 06/08/2023]
Abstract
We experimentally study the motion of light-activated colloidal microswimmers in a viscoelastic fluid. We find that, in such a non-Newtonian environment, the active colloids undergo an unexpected transition from enhanced angular diffusion to persistent rotational motion above a critical propulsion speed, despite their spherical shape and stiffness. We observe that, in contrast to chiral asymmetric microswimmers, the resulting circular orbits can spontaneously reverse their sense of rotation and exhibit an angular velocity and a radius of curvature that nonlinearly depend on the propulsion speed. By means of a minimal non-Markovian Langevin model for active Brownian motion, we show that these nonequilibrium effects emerge from the delayed response of the fluid with respect to the self-propulsion of the particle without counterpart in Newtonian fluids.
Collapse
Affiliation(s)
- N Narinder
- Fachbereich Physik, Universität Konstanz, Konstanz, D-78457, Germany
| | - Clemens Bechinger
- Fachbereich Physik, Universität Konstanz, Konstanz, D-78457, Germany
| | | |
Collapse
|
7
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
8
|
|