1
|
Wang TY, Li JF, Zhang HD, Chen JZY. Designs to Improve Capability of Neural Networks to Make Structural Predictions. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
2
|
Qi HK, Yang X, Yang QH, Luo MB. Effect of grafting density on the adsorption of end-grafted polymer chains. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Yang Q, Qi H, Yang X, Luo M, Huang J. Simulation study on the adsorption of polymer chains on checkerboard‐patterned surfaces. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qing‐Hui Yang
- Department of Physics Hangzhou Dianzi University Hangzhou China
| | - Hang‐Kai Qi
- Department of Physics Zhejiang University Hangzhou China
| | - Xiao Yang
- Department of Physics Taizhou University Taizhou China
| | - Meng‐Bo Luo
- Department of Physics Zhejiang University Hangzhou China
| | - Jian‐Hua Huang
- Department of Chemistry Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
4
|
Wilson MS, Landau DP. Thermodynamics of hydrophobic-polar model proteins on the face-centered cubic lattice. Phys Rev E 2021; 104:025303. [PMID: 34525583 DOI: 10.1103/physreve.104.025303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
The HP model, a coarse-grained protein representation with only hydrophobic (H) and polar (P) amino acids, has already been extensively studied on the simple cubic (SC) lattice. However, this geometry severely restricts possible bond angles, and a simple improvement is to instead use the face-centered cubic (fcc) lattice. In this paper, the density of states and ground state energies are calculated for several benchmark HP sequences on the fcc lattice using the replica-exchange Wang-Landau algorithm and a powerful set of Monte Carlo trial moves. Results from the fcc lattice proteins are directly compared with those obtained from a previous lattice protein folding study with a similar methodology on the SC lattice. A thermodynamic analysis shows comparable folding behavior between the two lattice geometries, but with a greater rate of hydrophobic-core formation persisting into lower temperatures on the fcc lattice.
Collapse
Affiliation(s)
- Matthew S Wilson
- Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, USA
| | - David P Landau
- Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
5
|
Yang QH, Qi HK, Yang X, Luo MB. Simulation study on the critical adsorption and diffusion of polymer chains on heterogeneous surfaces with random adsorption sites. SOFT MATTER 2021; 17:1000-1007. [PMID: 33284941 DOI: 10.1039/d0sm01721c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The critical adsorption and diffusion of a linear polymer chain on a heterogeneous surface with randomly distributed adsorption sites are studied using dynamic Monte Carlo simulations. Results show that the critical fraction of the adsorption sites at which critical adsorption takes place decreases exponentially with the increasing polymer-surface attraction strength and, at the same time, decreases with the increasing intra-polymer attraction strength. For adsorbed polymers with large intra-polymer attraction strength, we also find an adsorption-induced structural transition from a three-dimensional compact globule to a two-dimensional compacted pancake with an increasing fraction of adsorption sites. Anomalous sub-diffusion is observed for the adsorbed polymer diffusion on heterogeneous surfaces, in contrast to the normal diffusion on a homogeneous surface. The polymer on heterogeneous surfaces shows larger fluctuation in the total surface attraction energy and a longer waiting time.
Collapse
Affiliation(s)
- Qing-Hui Yang
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China.
| | | | | | | |
Collapse
|
6
|
Yang X, Huang JH, Mikhailov IV, Polotsky AA, Luo MB. Height Switching in Mixed Polymer Brushes with Polymers of Different Stiffnesses. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiao Yang
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jian-Hua Huang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ivan V. Mikhailov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr, 199004 Saint Petersburg, Russia
| | - Alexey A. Polotsky
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 31 Bolshoy pr, 199004 Saint Petersburg, Russia
| | - Meng-Bo Luo
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
|
8
|
Yang X, Yang QH, Fu Y, Wu F, Huang JH, Luo MB. Study on the adsorption process of a semi-flexible polymer onto homogeneous attractive surfaces. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Shi G, Wüst T, Landau DP. Elucidating thermal behavior, native contacts, and folding funnels of simple lattice proteins using replica exchange Wang-Landau sampling. J Chem Phys 2018; 149:164913. [PMID: 30384708 DOI: 10.1063/1.5026256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We studied the folding behavior of two coarse-grained, lattice models, the HP (hydrophobic-polar) model and the semi-flexible H0P model, whose 124 monomer long sequences were derived from the protein Ribonuclease A. Taking advantage of advanced parallel computing techniques, we applied replica exchange Wang-Landau sampling and calculated the density of states over the models entire energy ranges to high accuracy. We then determined both energetic and structural quantities in order to elucidate the folding behavior of each model completely. As a result of sufficiently long sequences and model complexity, yet computational accessibility, we were able to depict distinct free energy folding funnels for both models. In particular, we found that the HP model folds in a single-step process with a very highly degenerate native state and relatively flat low temperature folding funnel minimum. By contrast, the semi-flexible H0P model folds via a multi-step process and the native state is almost four orders of magnitude less degenerate than that for the HP model. In addition, for the H0P model, the bottom of the free energy folding funnel remains rough, even at low temperatures.
Collapse
Affiliation(s)
- Guangjie Shi
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602-0002, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zurich, 8092 Zurich, Switzerland
| | - David P Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602-0002, USA
| |
Collapse
|
10
|
Farris ACK, Shi G, Wüst T, Landau DP. The role of chain-stiffness in lattice protein models: A replica-exchange Wang-Landau study. J Chem Phys 2018; 149:125101. [PMID: 30278675 DOI: 10.1063/1.5045482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using Monte Carlo simulations, we investigate simple, physically motivated extensions to the hydrophobic-polar lattice protein model for the small (46 amino acid) protein Crambin. We use two-dimensional replica-exchange Wang-Landau sampling to study the effects of a bond angle stiffness parameter on the folding and uncover a new step in the collapse process for particular values of this stiffness parameter. A physical interpretation of the folding is developed by analysis of changes in structural quantities, and the free energy landscape is explored. For these special values of stiffness, we find non-degenerate ground states, a property that is consistent with behavior of real proteins, and we use these unique ground states to elucidate the formation of native contacts during the folding process. Through this analysis, we conclude that chain-stiffness is particularly influential in the low energy, low temperature regime of the folding process once the lattice protein has partially collapsed.
Collapse
Affiliation(s)
- Alfred C K Farris
- Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, USA
| | - Guangjie Shi
- Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich, 8092 Zürich, Switzerland
| | - David P Landau
- Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
11
|
Wilson MS, Shi G, Wüst T, Li YW, Landau DP. Influence of substrate pattern on the adsorption of HP lattice proteins. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1471691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Matthew S. Wilson
- Centre for Simulational Physics, The University of Georgia, Athens, GA, USA
| | - Guangjie Shi
- Centre for Simulational Physics, The University of Georgia, Athens, GA, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich IT Services, Zürich, Switzerland
| | - Ying Wai Li
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - David P. Landau
- Centre for Simulational Physics, The University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Sabater i Serra R, Torregrosa Cabanilles C, Meseguer Dueñas JM, Gómez Ribelles JL, Molina-Mateo J. Conformational Changes and Dynamics during Adsorption of Macromolecules with Different Degree of Polymerization Studied by Monte Carlo Simulations. MACROMOL THEOR SIMUL 2018. [DOI: 10.1002/mats.201800012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering; Universitat Politècnica de València; 46022 València Spain
- CIBER-BBN; Biomedical Research Networking Centre in Bioengineering; Biomaterials and Nanomedicine; Valencia Spain
| | | | - José María Meseguer Dueñas
- Centre for Biomaterials and Tissue Engineering; Universitat Politècnica de València; 46022 València Spain
- CIBER-BBN; Biomedical Research Networking Centre in Bioengineering; Biomaterials and Nanomedicine; Valencia Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering; Universitat Politècnica de València; 46022 València Spain
- CIBER-BBN; Biomedical Research Networking Centre in Bioengineering; Biomaterials and Nanomedicine; Valencia Spain
| | - José Molina-Mateo
- Centre for Biomaterials and Tissue Engineering; Universitat Politècnica de València; 46022 València Spain
| |
Collapse
|
13
|
Abstract
The conformational behavior of a coarse-grained finite polymer chain near an attractive spherical surface was investigated by means of multicanonical Monte Carlo computer simulations. In a detailed analysis of canonical equilibrium data over a wide range of sphere radius and temperature, we have constructed entire phase diagrams both for nongrafted and end-grafted polymers. For the identification of the conformational phases, we have calculated several energetic and structural observables such as gyration tensor based shape parameters and their fluctuations by canonical statistical analysis. Despite the simplicity of our model, it qualitatively represents in the considered parameter range real systems that are studied in experiments. The work discussed here could have experimental implications from protein-ligand interactions to designing nanosmart materials.
Collapse
Affiliation(s)
- Handan Arkin
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
- Department of Physics Engineering, Faculty of Engineering, Ankara University, Tandogan, 06100 Ankara, Turkey
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| |
Collapse
|
14
|
Williams MJ, Bachmann M. The effect of surface adsorption on tertiary structure formation in helical polymers. J Chem Phys 2017; 147:024902. [DOI: 10.1063/1.4991564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew J. Williams
- Institute of Engineering, Murray State University, Murray, Kentucky 42071, USA
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
15
|
Chan CH, Brown G, Rikvold PA. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams. Phys Rev E 2017; 95:053302. [PMID: 28618623 DOI: 10.1103/physreve.95.053302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 11/07/2022]
Abstract
A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.
Collapse
Affiliation(s)
- C H Chan
- Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA
| | - G Brown
- Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA.,Division of Science and Math, Tallahassee Community College, Tallahassee, Florida 32304, USA
| | - P A Rikvold
- Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA
| |
Collapse
|
16
|
Koci T, Bachmann M. Subphase transitions in first-order aggregation processes. Phys Rev E 2017; 95:032502. [PMID: 28415362 DOI: 10.1103/physreve.95.032502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/07/2022]
Abstract
In this paper, we investigate the properties of aggregation transitions in the context of generic coarse-grained homopolymer systems. By means of parallel replica-exchange Monte Carlo methods, we perform extensive simulations of systems consisting of up to 20 individual oligomer chains with five monomers each. Using the tools of the versatile microcanonical inflection-point analysis, we show that the aggregation transition is a first-order process consisting of a sequence of subtransitions between intermediate structural phases. We unravel the properties of these intermediate phases by collecting and analyzing their individual contributions towards the density of states of the system. The central theme of this systematic study revolves around translational entropy and its role in the striking phenomena of missing intermediate phases. We conclude with a brief discussion of the scaling properties of the transition temperature and the latent heat.
Collapse
Affiliation(s)
- Tomas Koci
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA.,Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá (MT), Brazil.,Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
17
|
Shi G, Wüst T, Landau DP. Characterizing folding funnels with replica exchange Wang-Landau simulation of lattice proteins. Phys Rev E 2016; 94:050402. [PMID: 27967143 DOI: 10.1103/physreve.94.050402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/01/2023]
Abstract
We have studied the folding of ribonuclease A by mapping it onto coarse-grained lattice protein models. With replica exchange Wang-Landau sampling, we calculated the free energy vs end-to-end distance as a function of temperature. A mapping to the famous hydrophobic-polar (HP) model shows a relatively shallow folding funnel and flat free energy minimum, reflecting the high degeneracy of the ground state. In contrast, extending the HP model with an additional "neutral" monomer type (i.e., a mapping to the three-letter H0P model) has a well developed, rough free energy funnel with a low degeneracy ground state. In both cases, folding funnels are asymmetric with temperature dependent shape.
Collapse
Affiliation(s)
- Guangjie Shi
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich, 8092 Zürich, Switzerland
| | - David P Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
18
|
Yang QH, Luo MB. Dynamics of adsorbed polymers on attractive homogeneous surfaces. Sci Rep 2016; 6:37156. [PMID: 27849002 PMCID: PMC5111053 DOI: 10.1038/srep37156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023] Open
Abstract
Dynamic behaviors of polymer chains adsorbed on an attractive, homogeneous surface are studied by using dynamic Monte Carlo simulations. The translational diffusion coefficient Dxy parallel to the surface decreases as the intra-polymer attraction strength EPP or the polymer-surface attraction strength EPS increases. The rotational relaxation time τR increases with EPS, but the dependence of τR on EPP is dependent on the adsorption state of the polymer. We find that τR decreases with increasing EPP for a partially adsorbed polymer but it increases with EPP for a fully adsorbed polymer. Scaling relations Dxy ~ N−α and τR ~ Nβ are found for long polymers. The scaling exponent α is independent of EPS for long polymers but increases with EPP from α = 1.06 at EPP = 0. While β ≈ 2.7 is also roughly independent of EPS for the adsorbed polymer at EPP = 0, but β increases with EPS at EPP > 0. Moreover, we find that β always decreases with increasing EPP. Our results reveal different effects of the attractive surface on the diffusion and rotation of adsorbed polymers.
Collapse
Affiliation(s)
- Qing-Hui Yang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
| |
Collapse
|
19
|
Yang QH, Wu F, Wang Q, Luo MB. Simulation study on the coil-globule transition of adsorbed polymers. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing-Hui Yang
- Department of Physics; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Fan Wu
- Department of Physics; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Qi Wang
- Department of Physics; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Meng-Bo Luo
- Department of Physics; Zhejiang University; Hangzhou 310027 People's Republic of China
- Collaborative Innovation Department of Advanced Microstructures; Nanjing People's Republic of China
| |
Collapse
|
20
|
Wang Q, Jiang SJ, Jia W, Luo MB. Simulation Study on the Coil-Globule Transition and Surface Adsorption of HP Chains. MACROMOL THEOR SIMUL 2016. [DOI: 10.1002/mats.201500071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi Wang
- Department of Physics; Zhejiang University; Hangzhou 310027 China
| | - Si-Jia Jiang
- Department of Physics; Zhejiang University; Hangzhou 310027 China
| | - Wen Jia
- Department of Physics; Zhejiang University; Hangzhou 310027 China
| | - Meng-Bo Luo
- Department of Physics; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
21
|
Martins PHL, Bachmann M. Interlocking order parameter fluctuations in structural transitions between adsorbed polymer phases. Phys Chem Chem Phys 2016; 18:2143-51. [PMID: 26690091 DOI: 10.1039/c5cp05038c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By means of contact-density chain-growth simulations of a simple coarse-grained lattice model for a polymer grafted at a solid homogeneous substrate, we investigate the complementary behavior of the numbers of surface-monomer and monomer-monomer contacts under various solvent and thermal conditions. This pair of contact numbers represents an appropriate set of order parameters that enables the distinct discrimination of significantly different compact phases of polymer adsorption. Depending on the transition scenario, these order parameters can interlock in perfect cooperation. The analysis helps understand the transitions from compact filmlike adsorbed polymer conformations into layered morphologies and dissolved adsorbed structures, respectively, in more detail.
Collapse
Affiliation(s)
- Paulo H L Martins
- Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT, Brazil.
| | | |
Collapse
|
22
|
Koci T, Bachmann M. Confinement effects upon the separation of structural transitions in linear systems with restricted bond fluctuation ranges. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042142. [PMID: 26565203 DOI: 10.1103/physreve.92.042142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 06/05/2023]
Abstract
By means of advanced parallel replica-exchange Monte Carlo methods we examine the influence of elasticity and confinement on the structural transitions of linear systems with restricted bonded interaction. For this purpose, we adopt a model for coarse-grained flexible polymers of finite length in the dilute regime. Hyperphase diagrams are constructed using energy-dependent canonical quantities to demonstrate the effects of the changes in the range of the confined interaction on the liquid and solid structural phases. With increasing bonded interaction range we observe the disappearance of the liquid phase and the fusion of the gas-liquid (or Θ) and the liquid-solid transitions. One of the most remarkable features, the liquid-gas transition, changes from second to first order if the confined interaction range exceeds a threshold that separates polymeric from nonpolymeric systems. The notoriously difficult sampling of the entropically suppressed conformations in the region of very strong first-order transitions is improved by using multiple Gaussian modified ensembles.
Collapse
Affiliation(s)
- Tomas Koci
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
- Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá (MT), Brazil
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
23
|
Hidaka T, Shimada A, Nakata Y, Kodama H, Kurihara H, Tokihiro T, Ihara S. Simple model of pH-induced protein denaturation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012709. [PMID: 26274205 DOI: 10.1103/physreve.92.012709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 06/04/2023]
Abstract
The pH-induced conformational changes of proteins are systematically studied in the framework of a hydrophobic-polar (HP) model, in which proteins are dramatically simplified as chains of hydrophobic (H) and polar (P) beads on a lattice. We express the electrostatic interaction, the principal driving force of pH-induced unfolding that is not included in the conventional HP model, as the repulsive energy term between P monomers. As a result of the exact enumeration of all of the 14- to 18-mers, it is found that lowest-energy states in many sequences change from single "native" conformations to multiple sets of "denatured" conformations with an increase in the electrostatic repulsion. The switching of the lowest-energy states occurs in quite a similar way to real proteins: it is almost always between two states, while in a small fraction of ≥16-mers it is between three states. We also calculate the structural fluctuations for all of the denatured states and find that the denatured states contain a broad range of incompletely unfolded conformations, similar to "molten globule" states referred to in acid or alkaline denatured real proteins. These results show that the proposed model provides a simple physical picture of pH-induced protein denaturation.
Collapse
Affiliation(s)
- T Hidaka
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - A Shimada
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Y Nakata
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - H Kodama
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - H Kurihara
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - T Tokihiro
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - S Ihara
- Institute for Biology and Mathematics of Dynamic Cellular Processes (iBMath), The University of Tokyo, Komaba, Tokyo 153-8904, Japan
- Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| |
Collapse
|
24
|
Vogel T, Gross J, Bachmann M. Thermodynamics of the adsorption of flexible polymers on nanowires. J Chem Phys 2015; 142:104901. [DOI: 10.1063/1.4913959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Vogel
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jonathan Gross
- Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
- Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá , Mato Grosso, Brazil
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
25
|
Luo MB, Ziebarth JD, Wang Y. Interplay of Coil-Globule Transition and Surface Adsorption of a Lattice HP Protein Model. J Phys Chem B 2014; 118:14913-21. [PMID: 25458556 PMCID: PMC4280116 DOI: 10.1021/jp506126d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
An
end-grafted hydrophobic-polar (HP) model protein chain with
alternating H and P monomers is studied to examine interactions between
the critical adsorption transition due to surface attraction and the
collapse transition due to pairwise attractive H–H interactions.
We find that the critical adsorption phenomenon can always be observed;
however, the critical adsorption temperature TCAP is influenced by the attractive H–H interactions
in some cases. When the collapse temperature Tc is lower than TCAP, the critical
adsorption of the HP chain is similar to that of a homopolymer without
intrachain attractions and TCAP remains
unchanged, whereas the collapse transition is suppressed by the adsorption.
In contrast, for cases where Tc is close
to or higher than TCAP, TCAP of the HP chain is increased, indicating that a collapsed
chain is more easily adsorbed on the surface. The strength of the
H–H attraction also influences the statistical size and shape
of the polymer, with strong H–H attractions resulting in adsorbed
and collapsed chains adopting two-dimensional, circular conformations.
Collapse
Affiliation(s)
- Meng-Bo Luo
- Department of Physics, Zhejiang University , Hangzhou 310027, P. R. China
| | - Jesse D Ziebarth
- Department of Chemistry, The University of Memphis , Memphis, Tennessee 38152, United States
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis , Memphis, Tennessee 38152, United States
| |
Collapse
|
26
|
Shi G, Vogel T, Wüst T, Li YW, Landau DP. Effect of single-site mutations on hydrophobic-polar lattice proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033307. [PMID: 25314564 DOI: 10.1103/physreve.90.033307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 06/04/2023]
Abstract
We developed a heuristic method for determining the ground-state degeneracy of hydrophobic-polar (HP) lattice proteins, based on Wang-Landau and multicanonical sampling. It is applied during comprehensive studies of single-site mutations in specific HP proteins with different sequences. The effects in which we are interested include structural changes in ground states, changes of ground-state energy, degeneracy, and thermodynamic properties of the system. With respect to mutations, both extremely sensitive and insensitive positions in the HP sequence have been found. That is, ground-state energies and degeneracies, as well as other thermodynamic and structural quantities, may be either largely unaffected or may change significantly due to mutation.
Collapse
Affiliation(s)
- Guangjie Shi
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Thomas Vogel
- Theoretical Division (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich IT Services, 8092 Zürich, Switzerland
| | - Ying Wai Li
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - David P Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
27
|
Vogel T, Li YW, Wüst T, Landau DP. Scalable replica-exchange framework for Wang-Landau sampling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:023302. [PMID: 25215846 DOI: 10.1103/physreve.90.023302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 06/03/2023]
Abstract
We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.
Collapse
Affiliation(s)
- Thomas Vogel
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Ying Wai Li
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich IT Services, 8092 Zürich, Switzerland
| | - David P Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
28
|
Li YW, Vogel T, Wüst T, Landau DP. A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang-Landau sampling. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1742-6596/510/1/012012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Möddel M, Janke W, Bachmann M. Adsorption and pattern recognition of polymers at complex surfaces with attractive stripelike motifs. PHYSICAL REVIEW LETTERS 2014; 112:148303. [PMID: 24766025 DOI: 10.1103/physrevlett.112.148303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Indexed: 06/03/2023]
Abstract
We construct the complete structural phase diagram of polymer adsorption at substrates with attractive stripelike patterns in the parameter space spanned by the adsorption affinity of the stripes and temperature. Results were obtained by extensive generalized-ensemble Monte Carlo simulations of a generic model for the hybrid organic-inorganic system. By comparing with adhesion properties at homogeneous substrates, we find substantial differences in the formation of adsorbed polymer structures if translational invariance at the surface is broken by a regular pattern. Beside a more specific understanding of polymer adsorption processes, our results are potentially relevant for the design of macromolecular pattern recognition devices such as sensors.
Collapse
Affiliation(s)
- Monika Möddel
- Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Wolfhard Janke
- Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Michael Bachmann
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA; Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso, Brazil; and Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Li Y, Wüst T, Landau D. Wang–Landau sampling of the interplay between surface adsorption and folding of HP lattice proteins. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.847273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Blavatska V, Janke W. Conformational transitions in random heteropolymer models. J Chem Phys 2014; 140:034904. [DOI: 10.1063/1.4849175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Yang QH, Qian CJ, Li H, Luo MB. Dynamics of a polymer adsorbed to an attractive homogeneous flat surface. Phys Chem Chem Phys 2014; 16:23292-300. [DOI: 10.1039/c4cp03105a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer conformation and statistical sizes change with the surface contact number during the adsorption.
Collapse
Affiliation(s)
- Qing-Hui Yang
- Department of Physics
- Zhejiang University
- Hangzhou 310027, China
| | - Chang-Ji Qian
- Department of Physics
- Wenzhou University
- Wenzhou 325035, China
| | - Hong Li
- Department of Physics
- Wenzhou University
- Wenzhou 325035, China
| | - Meng-Bo Luo
- Department of Physics
- Zhejiang University
- Hangzhou 310027, China
| |
Collapse
|
33
|
Abstract
This work explores the impact of knots, knot depth and motif of the threading terminus in protein folding properties (kinetics, thermodynamics and mechanism) via extensive Monte Carlo simulations of lattice models. A knotted backbone has no effect on protein thermodynamic stability but it may affect key aspects of folding kinetics. In this regard, we found clear evidence for a functional advantage of knots: knots enhance kinetic stability because a knotted protein unfolds at a distinctively slower rate than its unknotted counterpart. However, an increase in knot deepness does not necessarily lead to more effective changes in folding properties. In this regard, a terminus with a non-trivial conformation (e.g. hairpin) can have a more dramatic effect in enhancing kinetic stability than knot depth. Nevertheless, our results suggest that the probability of the denatured ensemble to keep knotted is higher for proteins with deeper knots, indicating that knot depth plays a role in determining the topology of the denatured state. Refolding simulations starting from denatured knotted conformations show that not every knot is able to nucleate folding and further indicate that the formation of the knotting loop is a key event in the folding of knotted trefoils. They also show that there are specific native contacts within the knotted core that are crucial to keep a native knotting loop in denatured conformations which otherwise have no detectable structure. The study of the knotting mechanism reveals that the threading of the knotting loop generally occurs towards late folding in conformations that exhibit a significant degree of structural consolidation.
Collapse
Affiliation(s)
- Miguel A. Soler
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Física, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia F. N. Faísca
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Física, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
34
|
Vogel T, Li YW, Wüst T, Landau DP. Generic, hierarchical framework for massively parallel Wang-Landau sampling. PHYSICAL REVIEW LETTERS 2013; 110:210603. [PMID: 23745852 DOI: 10.1103/physrevlett.110.210603] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/14/2013] [Indexed: 06/02/2023]
Abstract
We introduce a parallel Wang-Landau method based on the replica-exchange framework for Monte Carlo simulations. To demonstrate its advantages and general applicability for simulations of complex systems, we apply it to different spin models including spin glasses, the Ising model, and the Potts model, lattice protein adsorption, and the self-assembly process in amphiphilic solutions. Without loss of accuracy, the method gives significant speed-up and potentially scales up to petaflop machines.
Collapse
Affiliation(s)
- Thomas Vogel
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|