1
|
Kusch L, Breyton M, Depannemaecker D, Petkoski S, Jirsa VK. Synchronization in spiking neural networks with short and long connections and time delays. CHAOS (WOODBURY, N.Y.) 2025; 35:013161. [PMID: 39883693 DOI: 10.1063/5.0158186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/13/2024] [Indexed: 02/01/2025]
Abstract
Synchronization is fundamental for information processing in oscillatory brain networks and is strongly affected by time delays via signal propagation along long fibers. Their effect, however, is less evident in spiking neural networks given the discrete nature of spikes. To bridge the gap between these different modeling approaches, we study the synchronization conditions, dynamics underlying synchronization, and the role of the delay of a two-dimensional network model composed of adaptive exponential integrate-and-fire neurons. Through parameter exploration of neuronal and network properties, we map the synchronization behavior as a function of unidirectional long-range connection and the microscopic network properties and demonstrate that the principal network behaviors comprise standing or traveling waves of activity and depend on noise strength, E/I balance, and voltage adaptation, which are modulated by the delay of the long-range connection. Our results show the interplay of micro- (single neuron properties), meso- (connectivity and composition of the neuronal network), and macroscopic (long-range connectivity) parameters for the emergent spatiotemporal activity of the brain.
Collapse
Affiliation(s)
- Lionel Kusch
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
| | - Martin Breyton
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
- Service de Pharmacologie Clinique et Pharmacovigilance, Assistance Publique des Hôpitaux de Marseille, Marseille 13005, France
| | - Damien Depannemaecker
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
| | - Spase Petkoski
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
| | - Viktor K Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France
| |
Collapse
|
2
|
Scarciglia A, Catrambone V, Bianco M, Bonanno C, Toschi N, Valenza G. Stochastic brain dynamics exhibits differential regional distribution and maturation-related changes. Neuroimage 2024; 290:120562. [PMID: 38484917 DOI: 10.1016/j.neuroimage.2024.120562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful non-invasive method for studying brain function by analyzing blood oxygenation level-dependent (BOLD) signals. These signals arise from intricate interplays of deterministic and stochastic biological elements. Quantifying the stochastic part is challenging due to its reliance on assumptions about the deterministic segment. We present a methodological framework to estimate intrinsic stochastic brain dynamics in fMRI data without assuming deterministic dynamics. Our approach utilizes Approximate Entropy and its behavior in noisy series to identify and characterize dynamical noise in unobservable fMRI dynamics. Applied to extensive fMRI datasets (645 Cam-CAN, 1086 Human Connectome Project subjects), we explore lifelong maturation of intrinsic brain noise. Findings indicate 10% to 60% of fMRI signal power is due to intrinsic stochastic brain elements, varying by age. These components demonstrate a physiological role of neural noise which shows a distinct distributions across brain regions and increase linearly during maturation.
Collapse
Affiliation(s)
- Andrea Scarciglia
- Department of Information Engineering, School of Engineering, University of Pisa, Italy; Bioengineering and Robotics Research Center E.Piaggio, School of Engineering, University of Pisa, Italy.
| | - Vincenzo Catrambone
- Department of Information Engineering, School of Engineering, University of Pisa, Italy; Bioengineering and Robotics Research Center E.Piaggio, School of Engineering, University of Pisa, Italy
| | - Martina Bianco
- Department of Information Engineering, School of Engineering, University of Pisa, Italy; Department of Mathematics, University of Pisa, Italy
| | | | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; A.A. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, USA
| | - Gaetano Valenza
- Department of Information Engineering, School of Engineering, University of Pisa, Italy; Bioengineering and Robotics Research Center E.Piaggio, School of Engineering, University of Pisa, Italy
| |
Collapse
|
3
|
Petkoski S, Ritter P, Jirsa VK. White-matter degradation and dynamical compensation support age-related functional alterations in human brain. Cereb Cortex 2023; 33:6241-6256. [PMID: 36611231 PMCID: PMC10183745 DOI: 10.1093/cercor/bhac500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 01/09/2023] Open
Abstract
Structural connectivity of the brain at different ages is analyzed using diffusion-weighted magnetic resonance imaging (MRI) data. The largest decrease of streamlines is found in frontal regions and for long inter-hemispheric links. The average length of the tracts also decreases, but the clustering is unaffected. From functional MRI we identify age-related changes of dynamic functional connectivity (dFC) and spatial covariation features of functional connectivity (FC) links captured by metaconnectivity. They indicate more stable dFC, but wider range and variance of MC, whereas static features of FC did not show any significant differences with age. We implement individual connectivity in whole-brain models and test several hypotheses for the mechanisms of operation among underlying neural system. We demonstrate that age-related functional fingerprints are only supported if the model accounts for: (i) compensation of the individual brains for the overall loss of structural connectivity and (ii) decrease of propagation velocity due to the loss of myelination. We also show that with these 2 conditions, it is sufficient to decompose the time-delays as bimodal distribution that only distinguishes between intra- and inter-hemispheric delays, and that the same working point also captures the static FC the best, and produces the largest variability at slow time-scales.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Viktor K Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
4
|
Petkoski S, Jirsa VK. Normalizing the brain connectome for communication through synchronization. Netw Neurosci 2022; 6:722-744. [PMID: 36607179 PMCID: PMC9810372 DOI: 10.1162/netn_a_00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Networks in neuroscience determine how brain function unfolds, and their perturbations lead to psychiatric disorders and brain disease. Brain networks are characterized by their connectomes, which comprise the totality of all connections, and are commonly described by graph theory. This approach is deeply rooted in a particle view of information processing, based on the quantification of informational bits such as firing rates. Oscillations and brain rhythms demand, however, a wave perspective of information processing based on synchronization. We extend traditional graph theory to a dual, particle-wave, perspective, integrate time delays due to finite transmission speeds, and derive a normalization of the connectome. When applied to the database of the Human Connectome Project, it explains the emergence of frequency-specific network cores including the visual and default mode networks. These findings are robust across human subjects (N = 100) and are a fundamental network property within the wave picture. The normalized connectome comprises the particle view in the limit of infinite transmission speeds and opens the applicability of graph theory to a wide range of novel network phenomena, including physiological and pathological brain rhythms. These two perspectives are orthogonal, but not incommensurable, when understood within the novel, here-proposed, generalized framework of structural connectivity.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Viktor K. Jirsa
- Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
5
|
Anderson TL, Sheppard LW, Walter JA, Rolley RE, Reuman DC. Synchronous effects produce cycles in deer populations and deer‐vehicle collisions. Ecol Lett 2020; 24:337-347. [DOI: 10.1111/ele.13650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Thomas L. Anderson
- Department of Biology Appalachian State University 572 Rivers St. Boone NC28608USA
- Deparment of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas 2101 Constant Ave Lawrence KS66049USA
| | - Lawrence W. Sheppard
- Deparment of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas 2101 Constant Ave Lawrence KS66049USA
| | - Jonathan A. Walter
- Deparment of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas 2101 Constant Ave Lawrence KS66049USA
- Department of Environmental Sciences University of Virginia 291 McCormick Rd Charlottesville VA22904USA
| | - Robert E. Rolley
- Wisconsin Department of Natural Resources 101 S. Webster St. Madison WI53707USA
| | - Daniel C. Reuman
- Deparment of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas 2101 Constant Ave Lawrence KS66049USA
- Laboratory of Populations Rockefeller University 1230 York Ave. New York NY10065USA
| |
Collapse
|
6
|
Allegra Mascaro AL, Falotico E, Petkoski S, Pasquini M, Vannucci L, Tort-Colet N, Conti E, Resta F, Spalletti C, Ramalingasetty ST, von Arnim A, Formento E, Angelidis E, Blixhavn CH, Leergaard TB, Caleo M, Destexhe A, Ijspeert A, Micera S, Laschi C, Jirsa V, Gewaltig MO, Pavone FS. Experimental and Computational Study on Motor Control and Recovery After Stroke: Toward a Constructive Loop Between Experimental and Virtual Embodied Neuroscience. Front Syst Neurosci 2020; 14:31. [PMID: 32733210 PMCID: PMC7359878 DOI: 10.3389/fnsys.2020.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke. To this aim, we propose an approach that allows continuous integration of new experimental data into a computational modeling framework. First, results show that we could reproduce experimental object displacement with high accuracy via the simulated embodiment in the virtual world by feeding a spinal cord model with experimental registration of the cortical activity. Second, by using computational models of multiple granularities, our preliminary results show the possibility of simulating several features of the brain after stroke, from the local alteration in neuronal activity to long-range connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We further suggest that additional models could be integrated into the framework thanks to the versatility of the proposed approach, thus allowing many researchers to achieve continuously improved experimental design.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa, Italy.,European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Egidio Falotico
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Spase Petkoski
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
| | - Maria Pasquini
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Lorenzo Vannucci
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Núria Tort-Colet
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | | | | | - Emanuele Formento
- Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Emmanouil Angelidis
- Fortiss GmbH, Munich, Germany.,Chair of Robotics, Artificial Intelligence and Embedded Systems, Department of Informatics, Technical University of Munich, Munich, Germany
| | | | | | - Matteo Caleo
- Neuroscience Institute, National Research Council, Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alain Destexhe
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Cecilia Laschi
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Viktor Jirsa
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
| | - Marc-Oliver Gewaltig
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Petkoski S, Palva JM, Jirsa VK. Phase-lags in large scale brain synchronization: Methodological considerations and in-silico analysis. PLoS Comput Biol 2018; 14:e1006160. [PMID: 29990339 PMCID: PMC6039010 DOI: 10.1371/journal.pcbi.1006160] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/29/2018] [Indexed: 01/24/2023] Open
Abstract
Architecture of phase relationships among neural oscillations is central for their functional significance but has remained theoretically poorly understood. We use phenomenological model of delay-coupled oscillators with increasing degree of topological complexity to identify underlying principles by which the spatio-temporal structure of the brain governs the phase lags between oscillatory activity at distant regions. Phase relations and their regions of stability are derived and numerically confirmed for two oscillators and for networks with randomly distributed or clustered bimodal delays, as a first approximation for the brain structural connectivity. Besides in-phase, clustered delays can induce anti-phase synchronization for certain frequencies, while the sign of the lags is determined by the natural frequencies and by the inhomogeneous network interactions. For in-phase synchronization faster oscillators always phase lead, while stronger connected nodes lag behind the weaker during frequency depression, which consistently arises for in-silico results. If nodes are in anti-phase regime, then a distance π is added to the in-phase trends. The statistics of the phases is calculated from the phase locking values (PLV), as in many empirical studies, and we scrutinize the method’s impact. The choice of surrogates do not affects the mean of the observed phase lags, but higher significance levels that are generated by some surrogates, cause decreased variance and might fail to detect the generally weaker coherence of the interhemispheric links. These links are also affected by the non-stationary and intermittent synchronization, which causes multimodal phase lags that can be misleading if averaged. Taken together, the results describe quantitatively the impact of the spatio-temporal connectivity of the brain to the synchronization patterns between brain regions, and to uncover mechanisms through which the spatio-temporal structure of the brain renders phases to be distributed around 0 and π. Trial registration: South African Clinical Trials Register: http://www.sanctr.gov.za/SAClinicalbrnbspTrials/tabid/169/Default.aspx, then link to respiratory tract then link to tuberculosis, pulmonary; and TASK Applied Sciences Clinical Trials, AP-TB-201-16 (ALOPEXX): https://task.org.za/clinical-trials/. Functional connectivity, and in particular, phase coupling between distant brain regions may be fundamental in regulating neuronal processing and communication. However, phase relationships between the nodes of the brain and how they are confined by its spatio-temporal structure, have been mostly overlooked. We use a model of oscillatory dynamics superimposed on the space-time structure defined by the connectome, and we analyze the possible regimes of synchronization. Limitations of data analysis are also considered and we show that the choice of the significance threshold for coherence does not essentially impact the statistics of the observed phase lags, although it is crucial for the right detection of statistically significant coherence. Analytical insights are obtained for networks with heterogeneous time-delays, based on the empirical data from the connectome, and these are confirmed by numerical simulations, which show in- or anti-phase synchronization depending on the frequency and the distribution of time-delays. Phase lags are shown to result from inhomogeneous network interactions, so that stronger connected nodes generally phase lag behind the weaker.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
- * E-mail: (SP); (VKJ)
| | - J. Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Viktor K. Jirsa
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
- * E-mail: (SP); (VKJ)
| |
Collapse
|
8
|
Klapwijk MJ, Walter JA, Hirka A, Csóka G, Björkman C, Liebhold AM. Transient synchrony among populations of five foliage-feeding Lepidoptera. J Anim Ecol 2018. [PMID: 29536534 DOI: 10.1111/1365-2656.12823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of transient population dynamics have largely focused on temporal changes in dynamical behaviour, such as the transition between periods of stability and instability. This study explores a related dynamic pattern, namely transient synchrony during a 49-year period among populations of five sympatric species of forest insects that share host tree resources. The long time series allows a more comprehensive exploration of transient synchrony patterns than most previous studies. Considerable variation existed in the dynamics of individual species, ranging from periodic to aperiodic. We used time-averaged methods to investigate long-term patterns of synchrony and time-localized methods to detect transient synchrony. We investigated transient patterns of synchrony between species and related these to the species' varying density dependence structures; even species with very different density dependence exhibited at least temporary periods of synchrony. Observed periods of interspecific synchrony may arise from interactions with host trees (e.g., induced host defences), interactions with shared natural enemies or shared impacts of environmental stochasticity. The transient nature of synchrony observed here raises questions both about the identity of synchronizing mechanisms and how these mechanisms interact with the endogenous dynamics of each species. We conclude that these patterns are the result of interspecific interactions that act only temporarily to synchronize populations, after which differences in the endogenous population dynamics among the species acts to desynchronize their dynamics.
Collapse
Affiliation(s)
- Maartje J Klapwijk
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonathan A Walter
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA.,Department of Ecology and Evolution and Kansas Biological Survey, University of Kansas, Lawrence, KS, USA
| | - Anikó Hirka
- Department of Forest Protection, NARIC Forest Research Institute, Mátrafûred, Hungary
| | - György Csóka
- Department of Forest Protection, NARIC Forest Research Institute, Mátrafûred, Hungary
| | - Christer Björkman
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
9
|
Detecting Chronotaxic Systems from Single-Variable Time Series with Separable Amplitude and Phase. ENTROPY 2015. [DOI: 10.3390/e17064413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|