1
|
Maire R, Plati A, Smallenburg F, Foffi G. Non-equilibrium coexistence between a fluid and a hotter or colder crystal of granular hard disks. J Chem Phys 2025; 162:124901. [PMID: 40125686 DOI: 10.1063/5.0250643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Non-equilibrium phase coexistence is commonly observed in both biological and artificial systems, yet understanding it remains a significant challenge. Unlike equilibrium systems, where free energy provides a unifying framework, the absence of such a quantity in non-equilibrium settings complicates their theoretical understanding. Granular materials, driven out of equilibrium by energy dissipation during collisions, serve as an ideal platform to investigate these systems, offering insights into the parallels and distinctions between equilibrium and non-equilibrium phase behavior. For example, the coexisting dense phase is typically colder than the dilute phase, a result usually attributed to greater dissipation in denser regions. In this article, we demonstrate that this is not always the case. Using a simple numerical granular model, we show that a hot solid and a cold liquid can coexist in granular systems. This counterintuitive phenomenon arises because the collision frequency can be lower in the solid phase than in the liquid phase, consistent with equilibrium results for hard-disk systems. We further demonstrate that kinetic theory can be extended to accurately predict phase temperatures even at very high packing fractions, including within the solid phase. Our results highlight the importance of collisional dynamics and energy exchange in determining phase behavior in granular materials, offering new insights into non-equilibrium phase coexistence and the complex physics underlying granular systems.
Collapse
Affiliation(s)
- R Maire
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - A Plati
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - F Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - G Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
2
|
Maire R, Plati A. Enhancing (quasi-)long-range order in a two-dimensional driven crystal. J Chem Phys 2024; 161:054902. [PMID: 39087549 DOI: 10.1063/5.0217958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
It has been recently shown that 2D systems can exhibit crystalline phases with long-range translational order showcasing a striking violation of the Hohenberg-Mermin-Wagner (HMW) theorem, which is valid at equilibrium. This is made possible by athermal driving mechanisms that inject energy into the system without exciting long wavelength modes of the density field, thereby inducing hyperuniformity. However, as thermal fluctuations are superimposed on the non-equilibrium driving, long-range translational order is inevitably lost. Here, we discuss the possibility of exploiting non-equilibrium effects to suppress arbitrarily large density fluctuations even when a global thermal bath is coupled to the system. We introduce a model of a harmonic crystal driven both by a global thermal bath and by a momentum conserving noise, where the typical observables related to density fluctuations and long-range translational order can be analytically derived and put in relation. This model allows us to rationalize the violation of the HMW theorem observed in previous studies through the prediction of large-wavelength phonons, which thermalize at a vanishing effective temperature when the global bath is switched off. The conceptual framework introduced through this theory is then applied to numerical simulations of a hard-disk solid in contact with a thermal bath and driven out-of-equilibrium by active collisions. Our numerical analysis demonstrates how varying driving and dissipative parameters can lead to an arbitrary enhancement of the quasi-long-range order in the system regardless of the applied global noise amplitude. Finally, we outline a possible experimental procedure to apply our results to a realistic granular system.
Collapse
Affiliation(s)
- R Maire
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - A Plati
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
3
|
Maire R, Plati A, Stockinger M, Trizac E, Smallenburg F, Foffi G. Interplay between an Absorbing Phase Transition and Synchronization in a Driven Granular System. PHYSICAL REVIEW LETTERS 2024; 132:238202. [PMID: 38905681 DOI: 10.1103/physrevlett.132.238202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 06/23/2024]
Abstract
Absorbing phase transitions (APTs) are widespread in nonequilibrium systems, spanning condensed matter, epidemics, earthquakes, ecology, and chemical reactions. APTs feature an absorbing state in which the system becomes entrapped, along with a transition, either continuous or discontinuous, to an active state. Understanding which physical mechanisms determine the order of these transitions represents a challenging open problem in nonequilibrium statistical mechanics. Here, by numerical simulations and mean-field analysis, we show that a quasi-2D vibrofluidized granular system exhibits a novel form of APT. The absorbing phase is observed in the horizontal dynamics below a critical packing fraction, and can be continuous or discontinuous based on the emergent degree of synchronization in the vertical motion. Our results provide a direct representation of a feasible experimental scenario, showcasing a surprising interplay between dynamic phase transition and synchronization.
Collapse
Affiliation(s)
- R Maire
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - A Plati
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - M Stockinger
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam, Germany
| | - E Trizac
- LPTMS, UMR 8626, CNRS, Université Paris-Saclay, 91405 Orsay, France
- Ecole normale supérieure de Lyon, F-69364 Lyon, France
| | - F Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - G Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
4
|
Berhanu M, Merminod S, Castillo G, Falcon E. Wave spectroscopy in a driven granular material. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2022.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Driven granular media constitute model systems in out-of-equilibrium statistical physics. By assimilating the motions of granular particles to those of atoms, by analogy, one can obtain macroscopic equivalent of phase transitions. Here, we study fluid-like and crystal-like two-dimensional states in a driven granular material. In our experimental device, a tunable magnetic field induces and controls remote interactions between the granular particles. We use high-speed video recordings to analyse the velocity fluctuations of individual particles in stationary regime. Using statistical averaging, we find that the particles self-organize into collective excitations characterized by dispersion relations in the frequency-wavenumber space. These findings thus reveal that mechanical waves analogous to condensed matter phonons propagate in driven granular media. When the magnetic coupling is weak, the waves are longitudinal, as expected for a fluid-like phase. When the coupling is stronger, both longitudinal and transverse waves propagate, which is typically seen in solid-like phases. We model the dispersion relations using the spatial distribution of particles and their interaction potential. Finally, we infer the elastic parameters of the granular assembly from equivalent sound velocities, thus realizing the spectroscopy of a granular material.
Collapse
Affiliation(s)
- Michael Berhanu
- Université Paris Cité, CNRS, MSC, UMR 7057, F-75013, Paris, France
| | - Simon Merminod
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gustavo Castillo
- Instituto de Ciencias de la Ingeniería, Universidad O’Higgins, Rancagua 2841959, Chile
| | - Eric Falcon
- Université Paris Cité, CNRS, MSC, UMR 7057, F-75013, Paris, France
| |
Collapse
|
5
|
Garzó V, Brito R, Soto R. Stability of the homogeneous steady state for a model of a confined quasi-two-dimensional granular fluid. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124904005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A linear stability analysis of the hydrodynamic equations of a model for confined quasi-two-dimensional granular gases is carried out. The stability analysis is performed around the homogeneous steady state (HSS) reached eventually by the system after a transient regime. In contrast to previous studies (which considered dilute or quasielastic systems), our analysis is based on the results obtained from the inelastic Enskog kinetic equation, which takes into account the (nonlinear) dependence of the transport coefficients and the cooling rate on dissipation and applies to moderate densities. As in earlier studies, the analysis shows that the HSS is linearly stable with respect to long enough wavelength excitations.
Collapse
|
6
|
Brito R, Soto R, Garzó V. Energy nonequipartition in a collisional model of a confined quasi-two-dimensional granular mixture. Phys Rev E 2020; 102:052904. [PMID: 33327089 DOI: 10.1103/physreve.102.052904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 11/07/2022]
Abstract
A collisional model of a confined quasi-two-dimensional granular mixture is considered to analyze homogeneous steady states. The model includes an effective mechanism to transfer the kinetic energy injected by vibration in the vertical direction to the horizontal degrees of freedom of grains. The set of Enskog kinetic equations for the velocity distribution functions of each component is derived first to analyze the homogeneous state. As in the one-component case, an exact scaling solution is found where the time dependence of the distribution functions occurs entirely through the granular temperature T. As expected, the kinetic partial temperatures T_{i} of each component are different and, hence, energy equipartition is broken down. In the steady state, explicit expressions for the temperature T and the ratio of partial kinetic temperatures T_{i}/T_{j} are obtained by considering Maxwellian distributions defined at the partial temperatures T_{i}. The (scaled) granular temperature and the temperature ratios are given in terms of the coefficients of restitution, the solid volume fraction, the (scaled) parameters of the collisional model, and the ratios of mass, concentration, and diameters. In the case of a binary mixture, the theoretical predictions are exhaustively compared with both direct simulation Monte Carlo and molecular dynamics simulations with a good agreement. The deviations are identified to be originated in the non-Gaussianity of the velocity distributions and on microsegregation patterns, which induce spatial correlations not captured in the Enskog theory.
Collapse
Affiliation(s)
- Ricardo Brito
- Departamento de Estructura de la Materia, Física Térmica y Electrónica and GISC, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rodrigo Soto
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
| | - Vicente Garzó
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEX), Universidad de Extremadura, E-06071 Badajoz, Spain
| |
Collapse
|
7
|
Schindler T, Rohwer CM. Ballistic propagation of density correlations and excess wall forces in quenched granular media. Phys Rev E 2020; 102:052901. [PMID: 33327181 DOI: 10.1103/physreve.102.052901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/18/2020] [Indexed: 11/07/2022]
Abstract
We investigate a granular gas in a shaken quasi-two-dimensional box in molecular dynamics computer simulations. After a sudden change (quench) of the shaking amplitude, transient density correlations are observed orders of magnitude beyond the steady-state correlation length scale. Propagation of the correlations is ballistic, in contrast to recently investigated quenches of Brownian particles that show diffusive propagation [Rohwer et al., Phys. Rev. Lett. 118, 015702 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.015702, Rohwer et al., Phys. Rev. E 97, 032125 (2018)2470-004510.1103/PhysRevE.97.032125]. At sufficiently strong cooling of the fluid the effect is overlaid by clustering instability of the homogeneous cooling state with different scaling behavior. We are able to identify different quench regimes. In each regime correlations exhibit remarkably universal position dependence. In simulations performed with side walls we find confinement effects for temperature and pressure in steady-state simulations and an additional transient wall pressure contribution when changing the shaking amplitude. The transient contribution is ascribed to enhanced relaxation of the fluid in the presence of walls. From incompatible scaling behavior we conclude that the observed effects with and without side walls constitute distinct phenomena.
Collapse
Affiliation(s)
- Thomas Schindler
- Theoretische Physik 1, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christian M Rohwer
- Department of Mathematics and Applied Mathematics, University of Cape Town, 7701 Rondebosch, Cape Town, South Africa; Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany; and 4th Institute for Theoretical Physics, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Brey JJ, de Soria MIG, Maynar P. Inhomogeneous cooling state of a strongly confined granular gas at low density. Phys Rev E 2019; 100:052901. [PMID: 31869941 DOI: 10.1103/physreve.100.052901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/07/2022]
Abstract
The inhomogeneous cooling state describing the hydrodynamic behavior of a freely evolving granular gas strongly confined between two parallel plates is studied, using a Boltzmann kinetic equation derived recently. By extending the idea of the homogeneous cooling state, we propose a scaling distribution in which all the time dependence occurs through the granular temperature of the system, while there is a dependence on the distance to the confining walls through the density. It is obtained that the velocity distribution is not isotropic, and it has two different granular temperature parameters associated to the motion perpendicular and parallel to the confining plates, respectively, although their cooling rates are the same. Moreover, when approaching the inhomogeneous cooling state, energy is sometimes transferred from degrees of freedom with lower granular temperature to those with a higher one, contrary to what happens in molecular systems. The cooling rate and the two partial granular temperatures are calculated by means of a Gaussian approximation. The theoretical predictions are compared with molecular dynamics simulation results and a good agreement is found.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
9
|
Maynar P, García de Soria MI, Brey JJ. Understanding an instability in vibrated granular monolayers. Phys Rev E 2019; 99:032903. [PMID: 30999450 DOI: 10.1103/physreve.99.032903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 11/07/2022]
Abstract
We investigate the dynamics of an ensemble of smooth inelastic hard spheres confined between two horizontal plates separated by a distance smaller than twice the diameter of the particles, in such a way that the system is quasi-two-dimensional. The bottom wall is vibrating and, therefore, it injects energy into the system in the vertical direction and a stationary state is reached. It is found that if the size of the plates is small enough, the stationary state is homogeneous. Otherwise, a cluster of particles is developed. The instability is understood by using some effective hydrodynamic equations in the horizontal plane. Moreover, the theoretical prediction for the size of the system above which it becomes unstable agrees very well with molecular dynamics simulation results without any fitting parameter.
Collapse
Affiliation(s)
- P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|
10
|
Schindler T, Kapfer SC. Nonequilibrium steady states, coexistence, and criticality in driven quasi-two-dimensional granular matter. Phys Rev E 2019; 99:022902. [PMID: 30934354 DOI: 10.1103/physreve.99.022902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Nonequilibrium steady states of vibrated inelastic frictionless spheres are investigated in quasi-two-dimensional confinement via molecular dynamics simulations. The phase diagram in the density-amplitude plane exhibits a fluidlike disordered and an ordered phase with threefold symmetry, as well as phase coexistence between the two. A dynamical mechanism exists that brings about metastable traveling clusters and at the same time stable clusters with anisotropic shapes at low vibration amplitude. Moreover, there is a square bilayer state which is connected to the fluid by BKTHNY-type two-step melting with an intermediate tetratic phase. The critical behavior of the two continuous transitions is studied in detail. For the fluid-tetratic transition, critical exponents of γ[over ̃]=1.73, η_{4}≈1/4, and z=2.05 are obtained.
Collapse
Affiliation(s)
- Thomas Schindler
- Theoretische Physik 1, FAU Erlangen-Nürnberg, Staudtstrasse 7, 91058 Erlangen, Germany
| | - Sebastian C Kapfer
- Theoretische Physik 1, FAU Erlangen-Nürnberg, Staudtstrasse 7, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Risso D, Soto R, Guzmán M. Effective two-dimensional model for granular matter with phase separation. Phys Rev E 2018; 98:022901. [PMID: 30253511 DOI: 10.1103/physreve.98.022901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 11/07/2022]
Abstract
Granular systems confined in vertically vibrated shallow horizontal boxes (quasi-two-dimensional geometry) present a liquid-to-solid phase transition when the frequency of the periodic forcing is increased. An effective model, where grains move and collide in two-dimensions is presented, which reproduces the aforementioned phase transition. The key element is that besides the two-dimensional degrees of freedom, each grain has an additional variable ɛ that accounts for the kinetic energy stored in the vertical motion in the real quasi-two-dimensional motion. This energy grows monotonically during free flight, mimicking the energy gained by collisions with the vibrating walls and, at collisions, this energy is instantaneously transferred to the horizontal degrees of freedom. As a result, the average values of ɛ and the kinetic temperature are decreasing functions of the local density, giving rise to an effective pressure that can present van der Waals loops. A kinetic theory approach predicts the conditions that must satisfy the energy growth function to obtain the phase separation, which are verified with molecular dynamics simulations. Notably, the effective equation of state and the critical points computed considering the velocity-time-of-flight correlations differ only slightly from those obtained by simple kinetic theory calculations that neglect those correlations.
Collapse
Affiliation(s)
- Dino Risso
- Departamento de Física, Universidad del Bío-Bío, Concepción, Chile
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| | - Marcelo Guzmán
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
|
13
|
Brey JJ, Maynar P, García de Soria MI. Kinetic equation and nonequilibrium entropy for a quasi-two-dimensional gas. Phys Rev E 2016; 94:040103. [PMID: 27841642 DOI: 10.1103/physreve.94.040103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 06/06/2023]
Abstract
A kinetic equation for a dilute gas of hard spheres confined between two parallel plates separated a distance smaller than two particle diameters is derived. It is a Boltzmann-like equation, which incorporates the effect of the confinement on the particle collisions. A function S(t) is constructed by adding to the Boltzmann expression a confinement contribution. Then it is shown that for the solutions of the kinetic equation, S(t) increases monotonically in time, until the system reaches a stationary inhomogeneous state, when S becomes the equilibrium entropy of the confined system as derived from equilibrium statistical mechanics. From the entropy, other equilibrium properties are obtained, and molecular dynamics simulations are used to verify some of the theoretical predictions.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - Pablo Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
14
|
Joyce M, Morand J, Viot P. Attractor nonequilibrium stationary states in perturbed long-range interacting systems. Phys Rev E 2016; 93:052129. [PMID: 27300851 DOI: 10.1103/physreve.93.052129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 11/07/2022]
Abstract
Isolated long-range interacting particle systems appear generically to relax to nonequilibrium states ("quasistationary states" or QSSs) which are stationary in the thermodynamic limit. A fundamental open question concerns the "robustness" of these states when the system is not isolated. In this paper we explore, using both analytical and numerical approaches to a paradigmatic one-dimensional model, the effect of a simple class of perturbations. We call them "internal local perturbations" in that the particle energies are perturbed at collisions in a way which depends only on the local properties. Our central finding is that the effect of the perturbations is to drive all the very different QSSs we consider towards a unique QSS. The latter is thus independent of the initial conditions of the system, but determined instead by both the long-range forces and the details of the perturbations applied. Thus in the presence of such a perturbation the long-range system evolves to a unique nonequilibrium stationary state, completely different from its state in absence of the perturbation, and it remains in this state when the perturbation is removed. We argue that this result may be generic for long-range interacting systems subject to perturbations which are dependent on the local properties (e.g., spatial density or velocity distribution) of the system itself.
Collapse
Affiliation(s)
- Michael Joyce
- Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC IN2P3 CNRS UMR 7585, Sorbonne Universités, 4, place Jussieu, 75252 Paris Cedex 05, France
| | - Jules Morand
- Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC IN2P3 CNRS UMR 7585, Sorbonne Universités, 4, place Jussieu, 75252 Paris Cedex 05, France.,National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa.,Institute of Theoretical Physics, Department of Physics, Stellenbosch University, Stellenbosch 7600, South Africa.,Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Pascal Viot
- Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
15
|
Brey JJ, Buzón V, García de Soria MI, Maynar P. Stability analysis of the homogeneous hydrodynamics of a model for a confined granular gas. Phys Rev E 2016; 93:062907. [PMID: 27415347 DOI: 10.1103/physreve.93.062907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 06/06/2023]
Abstract
The linear hydrodynamic stability of a model for confined quasi-two-dimensional granular gases is analyzed. The system exhibits homogeneous hydrodynamics, i.e., there are macroscopic evolution equations for homogeneous states. The stability analysis is carried out around all these states and not only the homogeneous steady state reached eventually by the system. It is shown that in some cases the linear analysis is not enough to reach a definite conclusion on the stability, and molecular dynamics simulation results are presented to elucidate these cases. The analysis shows the relevance of nonlinear hydrodynamic contributions to describe the behavior of spontaneous fluctuations occurring in the system, that lead even to the transitory formation of clusters of particles. The conclusion is that the system is always stable. The relevance of the results for describing the instabilities of confined granular gases observed experimentally is discussed.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|
16
|
Yang X, Zheng N, Wen P, Li L, Shi Q. Confinement-induced horizontal segregation in a vertically shaken granular bed. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.08.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Brey JJ, Buzón V, Maynar P, García de Soria MI. Hydrodynamics for a model of a confined quasi-two-dimensional granular gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052201. [PMID: 26066167 DOI: 10.1103/physreve.91.052201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 06/04/2023]
Abstract
The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity parameter involved in the definition of the model. Also an Euler transport term contributing to the energy transport equation is considered. This term arises from the gradient expansion of the rate of change of the temperature due to the inelasticity of collisions, and it vanishes for elastic systems. The hydrodynamic equations are particularized for the relevant case of a system in the homogeneous steady state. The relationship with previous works is analyzed.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|
18
|
Soto R, Risso D, Brito R. Shear viscosity of a model for confined granular media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062204. [PMID: 25615082 DOI: 10.1103/physreve.90.062204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 06/04/2023]
Abstract
The shear viscosity in the dilute regime of a model for confined granular matter is studied by simulations and kinetic theory. The model consists on projecting into two dimensions the motion of vibrofluidized granular matter in shallow boxes by modifying the collision rule: besides the restitution coefficient that accounts for the energy dissipation, there is a separation velocity that is added in each collision in the normal direction. The two mechanisms balance on average, producing stationary homogeneous states. Molecular dynamics simulations show that in the steady state the distribution function departs from a Maxwellian, with cumulants that remain small in the whole range of inelasticities. The shear viscosity normalized with stationary temperature presents a clear dependence with the inelasticity, taking smaller values compared to the elastic case. A Boltzmann-like equation is built and analyzed using linear response theory. It is found that the predictions show an excellent agreement with the simulations when the correct stationary distribution is used but a Maxwellian approximation fails in predicting the inelasticity dependence of the viscosity. These results confirm that transport coefficients depend strongly on the mechanisms that drive them to stationary states.
Collapse
Affiliation(s)
- Rodrigo Soto
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Dino Risso
- Departamento de Física, Universidad del Bío-Bío, Concepción, Chile
| | - Ricardo Brito
- Departamento de Física Aplicada I (Termología), Universidad Complutense de Madrid, Spain
| |
Collapse
|
19
|
Brey JJ, de Soria MIG, Maynar P, Buzón V. Memory effects in the relaxation of a confined granular gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032207. [PMID: 25314437 DOI: 10.1103/physreve.90.032207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 06/04/2023]
Abstract
The accuracy of a model to describe the horizontal dynamics of a confined quasi-two-dimensional system of inelastic hard spheres is discussed by comparing its predictions for the relaxation of the temperature in a homogenous system with molecular dynamics simulation results for the original system. A reasonably good agreement is found. Next the model is used to investigate the peculiarities of the nonlinear evolution of the temperature when the parameter controlling the energy injection is instantaneously changed while the system was relaxing. This can be considered as a nonequilibrium generalization of the Kovacs effect. It is shown that, in the low-density limit, the effect can be accurately described by using a simple kinetic theory based on the first Sonine approximation for the one-particle distribution function. Some possible experimental implications are indicated.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|
20
|
Brey JJ, Maynar P, García de Soria MI, Buzón V. Homogeneous hydrodynamics of a collisional model of confined granular gases. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052209. [PMID: 25353789 DOI: 10.1103/physreve.89.052209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 06/04/2023]
Abstract
The hydrodynamic equation governing the homogeneous time evolution of the temperature in a model of confined granular gas is studied by means of the Enskog equation. The existence of a normal solution of the kinetic equation is assumed as a condition for hydrodynamics. Dimensional analysis implies a scaling of the distribution function that is used to determine it in the first Sonine approximation, with a coefficient that evolves in time through its dependence on the temperature. The theoretical predictions are compared to numerical results obtained by the direct simulation Monte Carlo method and a good agreement is found. The relevance of the normal homogeneous distribution function to derive inhomogeneous hydrodynamic equations, for instance using the Champan-Enskog algorithm, is indicated.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
21
|
Khalil N, Garzó V. Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations. J Chem Phys 2014; 140:164901. [DOI: 10.1063/1.4871628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
22
|
Néel B, Rondini I, Turzillo A, Mujica N, Soto R. Dynamics of a first-order transition to an absorbing state. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042206. [PMID: 24827240 DOI: 10.1103/physreve.89.042206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Indexed: 06/03/2023]
Abstract
A granular system confined in a quasi-two-dimensional box that is vertically vibrated can transit to an absorbing state in which all particles bounce vertically in phase with the box, with no horizontal motion. In principle, this state can be reached for any density lower than the one corresponding to one complete monolayer, which is then the critical density. Below this critical value, the transition to the absorbing state is of first order, with long metastable periods, followed by rapid transitions driven by homogeneous nucleation. Molecular dynamics simulations and experiments show that there is a dramatic increase on the metastable times far below the critical density; in practice, it is impossible to observe spontaneous transitions close to the critical density. This peculiar feature is a consequence of the nonequilibrium nature of this first-order transition to the absorbing state. A Ginzburg-Landau model, with multiplicative noise, describes qualitatively the observed phenomena and explains the macroscopic size of the critical nuclei. The nuclei become of small size only close to a second critical point where the active phase becomes unstable via a saddle node bifurcation. It is only close to this second critical point that experiments and simulations can evidence spontaneous transitions to the absorbing state while the metastable times grow dramatically moving away from it.
Collapse
Affiliation(s)
- Baptiste Néel
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| | - Ignacio Rondini
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| | - Alex Turzillo
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| | - Nicolás Mujica
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| | - Rodrigo Soto
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| |
Collapse
|
23
|
Brey JJ, García de Soria MI, Maynar P, Buzón V. Homogeneous steady state of a confined granular gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062205. [PMID: 24483434 DOI: 10.1103/physreve.88.062205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Indexed: 06/03/2023]
Abstract
The nonequilibrium statistical mechanics and kinetic theory for a model of a confined quasi-two-dimensional gas of inelastic hard spheres is presented. The dynamics of the particles includes an effective mechanism to transfer the energy injected in the vertical direction to the horizontal degrees of freedom. The Enskog approximation is formulated and used as the basis to investigate the temperature and the distribution function of the steady state eventually reached by the system. An exact scaling of the distribution function of the system having implications on the form of its moments is pointed out. The theoretical predictions are compared with numerical results obtained by a particle simulation method, and a good agreement is found.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|