1
|
Gosteva L, Tarpin M, Wschebor N, Canet L. Inviscid fixed point of the multidimensional Burgers-Kardar-Parisi-Zhang equation. Phys Rev E 2024; 110:054118. [PMID: 39690666 DOI: 10.1103/physreve.110.054118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024]
Abstract
A new scaling regime characterized by a z=1 dynamical critical exponent has been reported in several numerical simulations of the one-dimensional Kardar-Parisi-Zhang and noisy Burgers equations. In these works, this scaling, differing from the well-known KPZ one z=3/2, was found to emerge in the tensionless limit for the interface and in the inviscid limit for the fluid. Based on functional renormalization group, the origin of this scaling has been elucidated. It was shown to be controlled by a yet unpredicted fixed point of the one-dimensional Burgers-KPZ equation, termed inviscid Burgers (IB) fixed point. The associated universal properties, including the scaling function, were calculated. All these findings were restricted to d=1, and it raises the intriguing question of the fate of this new IB fixed point in higher dimensions. In this work, we address this issue and analyze the multidimensional Burgers-KPZ equation using functional renormalization group. We show that the IB fixed point exists in all dimensions d≥0, and that it controls the large momentum behavior of the correlation functions in the inviscid limit. It turns out that it yields in all d the same super-universal value z=1 for the dynamical exponent.
Collapse
|
2
|
Carrasco ISS, Oliveira TJ. Dimensional crossover in Kardar-Parisi-Zhang growth. Phys Rev E 2024; 109:L042102. [PMID: 38755819 DOI: 10.1103/physreve.109.l042102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Two-dimensional (2D) Kardar-Parisi-Zhang (KPZ) growth is usually investigated on substrates of lateral sizes L_{x}=L_{y}, so that L_{x} and the correlation length (ξ) are the only relevant lengths determining the scaling behavior. However, in cylindrical geometry, as well as in flat rectangular substrates L_{x}≠L_{y} and, thus, the surfaces can become correlated in a single direction, when ξ∼L_{x}≪L_{y}. From extensive simulations of several KPZ models, we demonstrate that this yields a dimensional crossover in their dynamics, with the roughness scaling as W∼t^{β_{2D}} for t≪t_{c} and W∼t^{β_{1D}} for t≫t_{c}, where t_{c}∼L_{x}^{1/z_{2D}}. The height distributions (HDs) also cross over from the 2D flat (cylindrical) HD to the asymptotic Tracy-Widom Gaussian orthogonal ensemble (Gaussian unitary ensemble) distribution. Moreover, 2D to one-dimensional (1D) crossovers are found also in the asymptotic growth velocity and in the steady-state regime of flat systems, where a family of universal HDs exists, interpolating between the 2D and 1D ones as L_{y}/L_{x} increases. Importantly, the crossover scalings are fully determined and indicate a possible way to solve 2D KPZ models.
Collapse
Affiliation(s)
- Ismael S S Carrasco
- International Center of Physics, Institute of Physics, University of Brasilia, 70910-900 Brasilia, Federal District, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
3
|
Barreales BG, Meléndez JJ, Cuerno R, Ruiz-Lorenzo JJ. Universal interface fluctuations in the contact process. Phys Rev E 2023; 108:044801. [PMID: 37978703 DOI: 10.1103/physreve.108.044801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
We study the interface representation of the contact process at its directed-percolation critical point, where the scaling properties of the interface can be related to those of the original particle model. Interestingly, such a behavior happens to be intrinsically anomalous and more complex than that described by the standard Family-Vicsek dynamic scaling Ansatz of surface kinetic roughening. We expand on a previous numerical study by Dickman and Muñoz [Phys. Rev. E 62, 7632 (2000)10.1103/PhysRevE.62.7632] to fully characterize the kinetic roughening universality class for interface dimensions d=1,2, and 3. Beyond obtaining scaling exponent values, we characterize the interface fluctuations via their probability density function (PDF) and covariance, seen to display universal properties which are qualitatively similar to those recently assessed for the Kardar-Parisi-Zhang (KPZ) and other important universality classes of kinetic roughening. Quantitatively, while for d=1 the interface covariance seems to be well described by the KPZ, Airy_{1} covariance, no such agreement occurs in terms of the fluctuation PDF or the scaling exponents.
Collapse
Affiliation(s)
- B G Barreales
- Departamento de Física, Universidad de Extremadura, 06006 Badajoz, Spain
| | - J J Meléndez
- Departamento de Física, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Computación Científica Avanzada de Extremadura (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain
| | - R Cuerno
- Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - J J Ruiz-Lorenzo
- Departamento de Física, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Computación Científica Avanzada de Extremadura (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
4
|
Carrasco ISS, Oliveira TJ. One-point height fluctuations and two-point correlators of (2+1) cylindrical KPZ systems. Phys Rev E 2023; 107:064140. [PMID: 37464689 DOI: 10.1103/physreve.107.064140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 07/20/2023]
Abstract
While the one-point height distributions (HDs) and two-point covariances of (2+1) Kardar-Parisi-Zhang (KPZ) systems have been investigated in several recent works for flat and spherical geometries, for the cylindrical one the HD was analyzed for few models and nothing is known about the spatial and temporal covariances. Here, we report results for these quantities, obtained from extensive numerical simulations of discrete KPZ models, for three different setups yielding cylindrical growth. Beyond demonstrating the universality of the HD and covariances, our results reveal other interesting features of this geometry. For example, the spatial covariances measured along the longitudinal and azimuthal directions are different, with the former being quite similar to the curve for flat (2+1) KPZ systems, while the latter resembles the Airy_{2} covariance of circular (1+1) KPZ interfaces. We also argue (and present numerical evidence) that, in general, the rescaled temporal covariance A(t/t_{0}) decays asymptotically as A(x)∼x^{-λ[over ¯]} with an exponent λ[over ¯]=β+d^{*}/z, where d^{*} is the number of interface sides kept fixed during the growth (being d^{*}=1 for the systems analyzed here). Overall, these results complete the picture of the main statistics for the (2+1) KPZ class.
Collapse
Affiliation(s)
- Ismael S S Carrasco
- University of Brasilia, International Center of Physics, Institute of Physics, 70910-900 Brasilia, Federal District, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
5
|
Mozo Luis EE, Oliveira FA, de Assis TA. Accessibility of the surface fractal dimension during film growth. Phys Rev E 2023; 107:034802. [PMID: 37073068 DOI: 10.1103/physreve.107.034802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
Fractal properties on self-affine surfaces of films growing under nonequilibrium conditions are important in understanding the corresponding universality class. However, measurement of the surface fractal dimension has been intensively investigated and is still very problematic. In this work, we report the behavior of the effective fractal dimension in the context of film growth involving lattice models believed to belong to the Kardar-Parisi-Zhang (KPZ) universality class. Our results, which are presented for growth in a d-dimensional substrate (d=1,2) and use the three-point sinuosity (TPS) method, show universal scaling of the measure M, which is defined in terms of discretization of the Laplacian operator applied to the height of the film surface, M=t^{δ}g[Θ], where t is the time, g[Θ] is a scale function, δ=2β, Θ≡τt^{-1/z}, β, and z are the KPZ growth and dynamical exponents, respectively, and τ is a spatial scale length used to compute M. Importantly, we show that the effective fractal dimensions are consistent with the expected KPZ dimensions for d=1,2, if Θ≲0.3, which include a thin film regime for the extraction of the fractal dimension. This establishes the scale limits in which the TPS method can be used to accurately extract effective fractal dimensions that are consistent with those expected for the corresponding universality class. As a consequence, for the steady state, which is inaccessible to experimentalists studying film growth, the TPS method provided effective fractal dimension consistent with the KPZ ones for almost all possible τ, i.e., 1≲τ<L/2, where L is the lateral size of the substrate on which the deposit is grown. In the growth of thin films, the true fractal dimension can be observed in a narrow range of τ, the upper limit of which is of the same order of magnitude as the correlation length of the surface, indicating the limits of self-affinity of a surface in an experimentally accessible regime. This upper limit was comparatively lower for the Higuchi method or the height-difference correlation function. Scaling corrections for the measure M and the height-difference correlation function are studied analytically and compared for the Edwards-Wilkinson class at d=1, yielding similar accuracy for both methods. Importantly, we extend our discussion to a model representing diffusion-dominated growth of films and find that the TPS method achieves the corresponding fractal dimension only at steady state and in a narrow range of the scale length, compared to that found for the KPZ class.
Collapse
Affiliation(s)
- Edwin E Mozo Luis
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
| | - Fernando A Oliveira
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
- Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340, Niterói, RJ, Brazil
| | - Thiago A de Assis
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340, Niterói, RJ, Brazil
| |
Collapse
|
6
|
Oliveira TJ. Kardar-Parisi-Zhang universality class in (d+1)-dimensions. Phys Rev E 2022; 106:L062103. [PMID: 36671175 DOI: 10.1103/physreve.106.l062103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The determination of the exact exponents of the KPZ class in any substrate dimension d is one of the most important open issues in Statistical Physics. Based on the behavior of the dimensional variation of some exact exponent differences for other growth equations, I find here that the KPZ growth exponents (related to the temporal scaling of the fluctuations) are given by β_{d}=7/8d+13. These exponents present an excellent agreement with the most accurate estimates for them in the literature. Moreover, they are confirmed here through extensive Monte Carlo simulations of discrete growth models and real-space renormalization group (RG) calculations for directed polymers in random media (DPRM), up to d=15. The left-tail exponents of the probability density functions for the DPRM energy provide another striking verification of the analytical result above.
Collapse
Affiliation(s)
- Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
7
|
Oliveira TJ. Height distributions in interface growth: The role of the averaging process. Phys Rev E 2022; 105:064803. [PMID: 35854512 DOI: 10.1103/physreve.105.064803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Height distributions (HDs) are key quantities to uncover universality and geometry-dependence in evolving interfaces. To quantitatively characterize HDs, one uses adimensional ratios of their first central moments (m_{n}) or cumulants (κ_{n}), especially the skewness S and kurtosis K, whose accurate estimate demands an averaging over all L^{d} points of the height profile at a given time, in translation-invariant interfaces, and over N independent samples. One way of doing this is by calculating m_{n}(t) [or κ_{n}(t)] for each sample and then carrying out an average of them for the N interfaces, with S and K being calculated only at the end. Another approach consists in directly calculating the ratios for each interface and, then, averaging the N values. It turns out, however, that S and K for the growth regime HDs display strong finite-size and -time effects when estimated from these "interface statistics," as already observed in some previous works and clearly shown here, through extensive simulations of several discrete growth models belonging to the EW and KPZ classes on one- and two-dimensional substrates of sizes L=const. and L∼t. Importantly, I demonstrate that with "1-point statistics," i.e., by calculating m_{n}(t) [or κ_{n}(t)] once for all NL^{d} heights together, these corrections become very weak, so that S and K attain values very close to the asymptotic ones already at short times and for small L's. However, I find that this "1-point" (1-pt) approach fails in uncovering the universality of the HDs in the steady-state regime (SSR) of systems whose average height, h[over ¯], is a fluctuating variable. In fact, as demonstrated here, in this regime the 1-pt height evolves as h(t)=h[over ¯](t)+s_{λ}A^{1/2}L^{α}ζ+⋯-where P(ζ) is the underlying SSR HD-and the fluctuations in h[over ¯] yield S_{1-pt}∼t^{-1/2} and K_{1-pt}∼t^{-1}. Nonetheless, by analyzing P(h-h[over ¯]), the cumulants of P(ζ) can be accurately determined. I also show that different, but universal, asymptotic values for S and K (related, so, to different HDs) can be found from the "interface statistics" in the SSR. This reveals the importance of employing the various complementary approaches to reliably determine the universality class of a given system through its different HDs.
Collapse
Affiliation(s)
- Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
8
|
Bramwell ST. Analytic form of a two-dimensional critical distribution. Phys Rev E 2022; 105:034142. [PMID: 35428110 DOI: 10.1103/physreve.105.034142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This paper explores the possibility of establishing an analytic form of the distribution of the order parameter fluctuations in a two-dimensional critical spin-wave model, or width fluctuations of a two-dimensional Edwards-Wilkinson interface. It is shown that the characteristic function of the distribution can be expressed exactly as a gamma function quotient, while a Charlier series, using the convolution of two Gumbel distributions as the kernel, converges to the exact result over a restricted domain. These results can also be extended to calculate the temperature dependence of the distribution and give an insight into the origin of Gumbel-like distributions in steady-state and equilibrium quantities that are not extreme values.
Collapse
Affiliation(s)
- Steven T Bramwell
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| |
Collapse
|
9
|
Iwatsuka T, Fukai YT, Takeuchi KA. Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces. PHYSICAL REVIEW LETTERS 2020; 124:250602. [PMID: 32639767 DOI: 10.1103/physrevlett.124.250602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The nonequilibrium steady state of the one-dimensional (1D) Kardar-Parisi-Zhang (KPZ) universality class has been studied in-depth by exact solutions, yet no direct experimental evidence of its characteristic statistical properties has been reported so far. This is arguably because, for an infinitely large system, infinitely long time is needed to reach such a stationary state and also to converge to the predicted universal behavior. Here we circumvent this problem in the experimental system of growing liquid-crystal turbulence, by generating an initial condition that possesses a long-range property expected for the KPZ stationary state. The resulting interface fluctuations clearly show characteristic properties of the 1D stationary KPZ interfaces, including the convergence to the Baik-Rains distribution. We also identify finite-time corrections to the KPZ scaling laws, which turn out to play a major role in the direct test of the stationary KPZ interfaces. This paves the way to explore unsolved properties of the stationary KPZ interfaces experimentally, making possible connections to nonlinear fluctuating hydrodynamics and quantum spin chains as recent studies unveiled relation to the stationary KPZ.
Collapse
Affiliation(s)
- Takayasu Iwatsuka
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohsuke T Fukai
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazumasa A Takeuchi
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Daryaei E. Universality and crossover behavior of single-step growth models in 1+1 and 2+1 dimensions. Phys Rev E 2020; 101:062108. [PMID: 32688564 DOI: 10.1103/physreve.101.062108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
We study the kinetic roughening of the single-step (SS) growth model with a tunable parameter p in 1+1 and 2+1 dimensions by performing extensive numerical simulations. We show that there exists a very slow crossover from an intermediate regime dominated by the Edwards-Wilkinson class to an asymptotic regime dominated by the Kardar-Parisi-Zhang (KPZ) class for any p<1/2. We also identify the crossover time, the nonlinear coupling constant, and some nonuniversal parameters in the KPZ equation as a function p. The effective nonuniversal parameters are continuously decreasing with p but not in a linear fashion. Our results provide complete and conclusive evidence that the SS model for p≠1/2 belongs to the KPZ universality class in 2+1 dimensions.
Collapse
Affiliation(s)
- E Daryaei
- Department of Physics, Faculty of Basic Sciences, University of Neyshabur, P.O. Box 91136-899, Neyshabur, Iran
| |
Collapse
|
11
|
Carrasco ISS, Oliveira TJ. Geometry dependence in linear interface growth. Phys Rev E 2019; 100:042107. [PMID: 31770866 DOI: 10.1103/physreve.100.042107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 11/07/2022]
Abstract
The effect of geometry in the statistics of nonlinear universality classes for interface growth has been widely investigated in recent years, and it is well known to yield a split of them into subclasses. In this work, we investigate this for the linear classes of Edwards-Wilkinson and of Mullins-Herring in one and two dimensions. From comparison of analytical results with extensive numerical simulations of several discrete models belonging to these classes, as well as numerical integrations of the growth equations on substrates of fixed size (flat geometry) or expanding linearly in time (radial geometry), we verify that the height distributions (HDs) and the spatial and the temporal covariances are universal but geometry-dependent. In fact, the HDs are always Gaussian, and, when defined in terms of the so-called "KPZ ansatz" [h≃v_{∞}t+(Γt)^{β}χ], their probability density functions P(χ) have mean null, so that all their cumulants are null, except by their variances, which assume different values in the flat and radial cases. The shape of the (rescaled) covariance curves is analyzed in detail and compared with some existing analytical results for them. Overall, these results demonstrate that the splitting of such university classes is quite general, being not restricted to the nonlinear ones.
Collapse
Affiliation(s)
- I S S Carrasco
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.,Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
12
|
Rodríguez-Fernández E, Cuerno R. Gaussian statistics as an emergent symmetry of the stochastic scalar Burgers equation. Phys Rev E 2019; 99:042108. [PMID: 31108615 DOI: 10.1103/physreve.99.042108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 11/07/2022]
Abstract
Symmetries play a conspicuous role in the large-scale behavior of critical systems. In equilibrium they allow us to classify asymptotics into different universality classes, and out of equilibrium, they sometimes emerge as collective properties which are not explicit in the "bare" interactions. Here we elucidate the emergence of an up-down symmetry in the asymptotic behavior of the stochastic scalar Burgers equation in one and two dimensions, manifested by the occurrence of Gaussian fluctuations even within the time regime controlled by nonlinearities. This robustness of Gaussian behavior contradicts naive expectations due to the detailed relation-including the lack of up-down symmetry-between the Burgers equation and the Kardar-Parisi-Zhang equation, which paradigmatically displays non-Gaussian fluctuations described by Tracy-Widom distributions. We reach our conclusions via a dynamic renormalization group study of the field statistics, confirmed by direct evaluation of the field probability distribution function from numerical simulations of the dynamical equation.
Collapse
Affiliation(s)
- Enrique Rodríguez-Fernández
- Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
| | - Rodolfo Cuerno
- Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
| |
Collapse
|
13
|
Carrasco ISS, Oliveira TJ. Circular Kardar-Parisi-Zhang interfaces evolving out of the plane. Phys Rev E 2019; 99:032140. [PMID: 30999413 DOI: 10.1103/physreve.99.032140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Circular KPZ interfaces spreading radially in the plane have Gaussian unitary ensemble (GUE) Tracy-Widom (TW) height distribution (HD) and Airy_{2} spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a mountain, or any surface of revolution? To give an answer to this, we report here extensive numerical analyses of several one-dimensional KPZ models on substrates whose size enlarges as 〈L(t)〉=L_{0}+ωt^{γ}, while their mean height 〈h〉 increases as usual [〈h〉∼t]. We show that the competition between the L enlargement and the correlation length (ξ≃ct^{1/z}) plays a key role in the asymptotic statistics of the interfaces. While systems with γ>1/z have HDs given by GUE and the interface width increasing as w∼t^{β}, for γ<1/z the HDs are Gaussian, in a correlated regime where w∼t^{αγ}. For the special case γ=1/z, a continuous class of distributions exists, which interpolate between Gaussian (for small ω/c) and GUE (for ω/c≫1). Interestingly, the HD seems to agree with the Gaussian symplectic ensemble (GSE) TW distribution for ω/c≈10. Despite the GUE HDs for γ>1/z, the spatial covariances present a strong dependence on the parameters ω and γ, agreeing with Airy_{2} only for ω≫1, for a given γ, or when γ=1, for a fixed ω. These results considerably generalize our knowledge on 1D KPZ systems, unveiling the importance of the background space on their statistics.
Collapse
Affiliation(s)
- I S S Carrasco
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
- Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, Rio de Janeiro, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
14
|
Carrasco ISS, Oliveira TJ. Kardar-Parisi-Zhang growth on one-dimensional decreasing substrates. Phys Rev E 2018; 98:010102. [PMID: 30110783 DOI: 10.1103/physreve.98.010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 06/08/2023]
Abstract
Recent experimental works on one-dimensional (1D) circular Kardar-Parisi-Zhang (KPZ) systems whose radii decrease in time have reported controversial conclusions about the statistics of their interfaces. Motivated by this, here we investigate several one-dimensional KPZ models on substrates whose size changes in time as L(t)=L_{0}+ωt, focusing on the case ω<0. From extensive numerical simulations, we show that for L_{0}≫1 there exists a transient regime in which the statistics is consistent with that of flat KPZ systems (the ω=0 case), for both ω<0 and ω>0. Actually, for a given model, L_{0} and |ω|, we observe that a difference between ingrowing (ω<0) and outgrowing (ω>0) systems arises only at long times (t∼t_{c}=L_{0}/|ω|), when the expanding surfaces cross over to the statistics of curved KPZ systems, whereas the shrinking ones become completely correlated. A generalization of the Family-Vicsek scaling for the roughness of ingrowing interfaces is presented. Our results demonstrate that a transient flat statistics is a general feature of systems starting with large initial sizes, regardless of their curvature. This is consistent with their recent observation in ingrowing turbulent liquid crystal interfaces, but it is in contrast with the apparent observation of curved statistics in colloidal deposition at the edge of evaporating drops. A possible explanation for this last result, as a consequence of the very small number of monolayers analyzed in this experiment, is given. This is illustrated in a competitive growth model presenting a few-monolayer transient and an asymptotic behavior consistent, respectively, with the curved and flat statistics.
Collapse
Affiliation(s)
- I S S Carrasco
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| |
Collapse
|
15
|
Alves SG. Radial restricted solid-on-solid and etching interface-growth models. Phys Rev E 2018; 97:032801. [PMID: 29776046 DOI: 10.1103/physreve.97.032801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 06/08/2023]
Abstract
An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy_{2} process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.
Collapse
Affiliation(s)
- Sidiney G Alves
- Departamento de Física e Matemática, Universidade Federal de São João Del-Rei 36420-000, Ouro Branco, MG, Brazil
| |
Collapse
|
16
|
Morphological stabilization and KPZ scaling by electrochemically induced co-deposition of nanostructured NiW alloy films. Sci Rep 2017; 7:17997. [PMID: 29269845 PMCID: PMC5740171 DOI: 10.1038/s41598-017-18155-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 11/24/2022] Open
Abstract
We have assessed the stabilizing role that induced co-deposition has in the growth of nanostructured NiW alloy films by electrodeposition on polished steel substrates, under pulsed galvanostatic conditions. We have compared the kinetic roughening properties of NiW films with those of Ni films deposited under the same conditions, as assessed by Atomic Force Microscopy. The surface morphologies of both systems are super-rough at short times, but differ at long times: while a cauliflower-like structure dominates for Ni, the surfaces of NiW films display a nodular morphology consistent with more stable, conformal growth, whose height fluctuations are in the Kardar-Parisi-Zhang universality class of rough two-dimensional interfaces. These differences are explained by the mechanisms controlling surface growth in each case: mass transport through the electrolyte (Ni) and attachment of the incoming species to the growing interface (NiW). Thus, the long-time conformal growth regime is characteristic of electrochemical induced co-deposition under current conditions in which surface kinetics is hindered due to a complex reaction mechanism. These results agree with a theoretical model of surface growth in diffusion-limited systems, in which the key parameter is the relative importance of mass transport with respect to the kinetics of the attachment reaction.
Collapse
|
17
|
Almeida RAL, Ferreira SO, Ferraz I, Oliveira TJ. Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition. Sci Rep 2017. [PMID: 28630488 PMCID: PMC5476714 DOI: 10.1038/s41598-017-03843-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Kardar-Parisi-Zhang (KPZ) class is a paradigmatic example of universality in nonequilibrium phenomena, but clear experimental evidences of asymptotic 2D-KPZ statistics are still very rare, and far less understanding stems from its short-time behavior. We tackle such issues by analyzing surface fluctuations of CdTe films deposited on polymeric substrates, based on a huge spatio-temporal surface sampling acquired through atomic force microscopy. A pseudo-steady state (where average surface roughness and spatial correlations stay constant in time) is observed at initial times, persisting up to deposition of ~104 monolayers. This state results from a fine balance between roughening and smoothening, as supported by a phenomenological growth model. KPZ statistics arises at long times, thoroughly verified by universal exponents, spatial covariance and several distributions. Recent theoretical generalizations of the Family-Vicsek scaling and the emergence of log-normal distributions during interface growth are experimentally confirmed. These results confirm that high vacuum vapor deposition of CdTe constitutes a genuine 2D-KPZ system, and expand our knowledge about possible substrate-induced short-time behaviors.
Collapse
Affiliation(s)
- Renan A L Almeida
- Tokyo Institute of Technology, Department of Physics, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Sukarno O Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Isnard Ferraz
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Luis EEM, de Assis TA, Ferreira SC. Optimal detrended fluctuation analysis as a tool for the determination of the roughness exponent of the mounded surfaces. Phys Rev E 2017; 95:042801. [PMID: 28505814 DOI: 10.1103/physreve.95.042801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 11/07/2022]
Abstract
We present an optimal detrended fluctuation analysis (DFA) and apply it to evaluate the local roughness exponent in nonequilibrium surface growth models with mounded morphology. Our method consists in analyzing the height fluctuations computing the shortest distance of each point of the profile to a detrending curve that fits the surface within the investigated interval. We compare the optimal DFA (ODFA) with both the standard DFA and nondetrended analysis. We validate the ODFA method considering a one-dimensional model in the Kardar-Parisi-Zhang universality class starting from a mounded initial condition. We applied the methods to the Clarke-Vvedensky (CV) model in 2+1 dimensions with thermally activated surface diffusion and absence of step barriers. It is expected that this model belongs to the nonlinear molecular beam epitaxy (nMBE) universality class. However, an explicit observation of the roughness exponent in agreement with the nMBE class was still missing. The effective roughness exponent obtained with ODFA agrees with the value expected for the nMBE class, whereas using the other methods it does not agree. We also characterize the transient anomalous scaling of the CV model and obtained that the corresponding exponent is in agreement with the value reported for other nMBE models with weaker corrections to the scaling.
Collapse
Affiliation(s)
- Edwin E Mozo Luis
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
| | - Thiago A de Assis
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, Minas Gerais, 36570-900 Viçosa, Brazil
| |
Collapse
|
19
|
Reis FDAA. Effects of film growth kinetics on grain coarsening and grain shape. Phys Rev E 2017; 95:042805. [PMID: 28505723 DOI: 10.1103/physreve.95.042805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 11/07/2022]
Abstract
We study models of grain nucleation and coarsening during the deposition of a thin film using numerical simulations and scaling approaches. The incorporation of new particles in the film is determined by lattice growth models in three different universality classes, with no effect of the grain structure. The first model of grain coarsening is similar to that proposed by Saito and Omura [Phys. Rev. E 84, 021601 (2011)PLEEE81539-375510.1103/PhysRevE.84.021601], in which nucleation occurs only at the substrate, and the grain boundary evolution at the film surface is determined by a probabilistic competition of neighboring grains. The surface grain density has a power-law decay, with an exponent related to the dynamical exponent of the underlying growth kinetics, and the average radius of gyration scales with the film thickness with the same exponent. This model is extended by allowing nucleation of new grains during the deposition, with constant but small rates. The surface grain density crosses over from the initial power law decay to a saturation; at the crossover, the time, grain mass, and surface grain density are estimated as a function of the nucleation rate. The distributions of grain mass, height, and radius of gyration show remarkable power law decays, similar to other systems with coarsening and particle injection, with exponents also related to the dynamical exponent. The scaling of the radius of gyration with the height h relative to the base of the grain show clearly different exponents in growth dominated by surface tension and growth dominated by surface diffusion; thus it may be interesting for investigating the effects of kinetic roughening on grain morphology. In growth dominated by surface diffusion, the increase of grain size with temperature is observed.
Collapse
Affiliation(s)
- F D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil
| |
Collapse
|
20
|
Carrasco ISS, Oliveira TJ. Universality and dependence on initial conditions in the class of the nonlinear molecular beam epitaxy equation. Phys Rev E 2016; 94:050801. [PMID: 27967078 DOI: 10.1103/physreve.94.050801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 06/06/2023]
Abstract
We report extensive numerical simulations of growth models belonging to the nonlinear molecular beam epitaxy (nMBE) class, on flat (fixed-size) and expanding substrates (ES). In both d=1+1 and 2+1, we find that growth regime height distributions (HDs), and spatial and temporal covariances are universal, but are dependent on the initial conditions, while the critical exponents are the same for flat and ES systems. Thus, the nMBE class does split into subclasses, as does the Kardar-Parisi-Zhang (KPZ) class. Applying the "KPZ ansatz" to nMBE models, we estimate the cumulants of the 1+1 HDs. Spatial covariance for the flat subclass is hallmarked by a minimum, which is not present in the ES one. Temporal correlations are shown to decay following well-known conjectures.
Collapse
Affiliation(s)
- I S S Carrasco
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
21
|
Kelling J, Ódor G, Gemming S. Universality of (2+1)-dimensional restricted solid-on-solid models. Phys Rev E 2016; 94:022107. [PMID: 27627246 DOI: 10.1103/physreve.94.022107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 11/07/2022]
Abstract
Extensive dynamical simulations of restricted solid-on-solid models in D=2+1 dimensions have been done using parallel multisurface algorithms implemented on graphics cards. Numerical evidence is presented that these models exhibit Kardar-Parisi-Zhang surface growth scaling, irrespective of the step heights N. We show that by increasing N the corrections to scaling increase, thus smaller step-sized models describe better the asymptotic, long-wave-scaling behavior.
Collapse
Affiliation(s)
- Jeffrey Kelling
- Department of Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf, P. O. Box 51 01 19, 01314 Dresden, Germany.,Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P. O. Box 51 01 19, 01314 Dresden, Germany
| | - Géza Ódor
- Institute of Technical Physics and Materials Science, Centre for Energy Research of the Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - Sibylle Gemming
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P. O. Box 51 01 19, 01314 Dresden, Germany.,Institute of Physics, TU Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
22
|
Alves SG, Ferreira SC. Scaling, cumulant ratios, and height distribution of ballistic deposition in 3+1 and 4+1 dimensions. Phys Rev E 2016; 93:052131. [PMID: 27300853 DOI: 10.1103/physreve.93.052131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 06/06/2023]
Abstract
We investigate the origin of the scaling corrections in ballistic deposition models in high dimensions using the method proposed by Alves et al. [Phys. Rev. E 90, 052405 (2014)PLEEE81539-375510.1103/PhysRevE.90.052405] in d=2+1 dimensions, where the intrinsic width associated with the fluctuations of the height increments during the deposition processes is explicitly taken into account. In the present work, we show that this concept holds for d=3+1 and 4+1 dimensions. We have found that growth and roughness exponents and dimensionless cumulant ratios are in agreement with other models, presenting small finite-time corrections to the scaling, that in principle belong to the Kardar-Parisi-Zhang (KPZ) universality class in both d=3+1 and 4+1. Our results constitute further evidence that the upper critical dimension of the KPZ class, if it exists, is larger than 4.
Collapse
Affiliation(s)
- Sidiney G Alves
- Departamento de Física e Matemática, Universidade Federal de São João Del Rei, 36420-000 Ouro Branco, MG, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| |
Collapse
|
23
|
Carrasco ISS, Oliveira TJ. Width and extremal height distributions of fluctuating interfaces with window boundary conditions. Phys Rev E 2016; 93:012801. [PMID: 26871135 DOI: 10.1103/physreve.93.012801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 11/07/2022]
Abstract
We present a detailed study of squared local roughness (SLRDs) and local extremal height distributions (LEHDs), calculated in windows of lateral size l, for interfaces in several universality classes, in substrate dimensions d_{s}=1 and 2. We show that their cumulants follow a Family-Vicsek-type scaling, and, at early times, when ξ≪l (ξ is the correlation length), the rescaled SLRDs are given by log-normal distributions, with their nth cumulant scaling as (ξ/l)^{(n-1)d_{s}}. This gives rise to an interesting temporal scaling for such cumulants as 〈w_{n}〉_{c}∼t^{γ_{n}}, with γ_{n}=2nβ+(n-1)d_{s}/z=[2n+(n-1)d_{s}/α]β. This scaling is analytically proved for the Edwards-Wilkinson (EW) and random deposition interfaces and numerically confirmed for other classes. In general, it is featured by small corrections, and, thus, it yields exponents γ_{n} (and, consequently, α,β and z) in good agreement with their respective universality class. Thus, it is a useful framework for numerical and experimental investigations, where it is usually hard to estimate the dynamic z and mainly the (global) roughness α exponents. The stationary (for ξ≫l) SLRDs and LEHDs of the Kardar-Parisi-Zhang (KPZ) class are also investigated, and, for some models, strong finite-size corrections are found. However, we demonstrate that good evidence of their universality can be obtained through successive extrapolations of their cumulant ratios for long times and large l. We also show that SLRDs and LEHDs are the same for flat and curved KPZ interfaces.
Collapse
Affiliation(s)
- I S S Carrasco
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
24
|
Centres PM, Bustingorry S. From single-file diffusion to two-dimensional cage diffusion and generalization of the totally asymmetric simple exclusion process to higher dimensions. Phys Rev E 2016; 93:012134. [PMID: 26871051 DOI: 10.1103/physreve.93.012134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 06/05/2023]
Abstract
A two-dimensional constrained diffusion model is presented and characterized by numerical simulations. The model generalizes the one-dimensional single-file diffusion model by considering a cage diffusion constraint induced by neighboring particles, which is a more stringent condition than volume exclusion. Using numerical simulations we characterize the diffusion process and we particularly show that asymmetric transition probabilities lead to the two-dimensional Kardar-Parisi-Zhang universality class. Therefore, this very simple model effectively generalizes the one-dimensional totally asymmetric simple exclusion process to higher dimensions.
Collapse
Affiliation(s)
- P M Centres
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Chacabuco 917, D5700HHW, San Luis, Argentina
| | - S Bustingorry
- CONICET, Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
25
|
Alves SG, Oliveira TJ, Ferreira SC. Origins of scaling corrections in ballistic growth models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052405. [PMID: 25493801 DOI: 10.1103/physreve.90.052405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 06/04/2023]
Abstract
We study the ballistic deposition and the grain deposition models on two-dimensional substrates. Using the Kardar-Parisi-Zhang (KPZ) ansatz for height fluctuations, we show that the main contribution to the intrinsic width, which causes strong corrections to the scaling, comes from the fluctuations in the height increments along deposition events. Accounting for this correction in the scaling analysis, we obtain scaling exponents in excellent agreement with the KPZ class. We also propose a method to suppress these corrections, which consists in dividing the surface in bins of size ɛ and using only the maximal height inside each bin to do the statistics. Again, scaling exponents in remarkable agreement with the KPZ class are found. The binning method allows the accurate determination of the height distributions of the ballistic models in both growth and steady-state regimes, providing the universal underlying fluctuations foreseen for KPZ class in 2 + 1 dimensions. Our results provide complete and conclusive evidences that the ballistic model belongs to the KPZ universality class in 2+1 dimensions. Potential applications of the methods developed here, in both numerics and experiments, are discussed.
Collapse
Affiliation(s)
- Sidiney G Alves
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil
| |
Collapse
|
26
|
Nesic S, Cuerno R, Moro E. Macroscopic response to microscopic intrinsic noise in three-dimensional Fisher fronts. PHYSICAL REVIEW LETTERS 2014; 113:180602. [PMID: 25396356 DOI: 10.1103/physrevlett.113.180602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 06/04/2023]
Abstract
We study the dynamics of three-dimensional Fisher fronts in the presence of density fluctuations. To this end we simulate the Fisher equation subject to stochastic internal noise, and study how the front moves and roughens as a function of the number of particles in the system, N. Our results suggest that the macroscopic behavior of the system is driven by the microscopic dynamics at its leading edge where number fluctuations are dominated by rare events. Contrary to naive expectations, the strength of front fluctuations decays extremely slowly as 1/logN, inducing large-scale fluctuations which we find belong to the one-dimensional Kardar-Parisi-Zhang universality class of kinetically rough interfaces. Hence, we find that there is no weak-noise regime for Fisher fronts, even for realistic numbers of particles in macroscopic systems.
Collapse
Affiliation(s)
- S Nesic
- Departamento de Matemáticas & Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - R Cuerno
- Departamento de Matemáticas & Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - E Moro
- Departamento de Matemáticas & Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, 28911 Leganés, Spain and Instituto de Ingeniería del Conocimiento, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
27
|
Alves SG, Oliveira TJ, Ferreira SC. Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:020103. [PMID: 25215669 DOI: 10.1103/physreve.90.020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 06/03/2023]
Abstract
We show that the theoretical machinery developed for the Kardar-Parisi-Zhang (KPZ) class in low dimensions is obeyed by the restricted solid-on-solid model for substrates with dimensions up to d=6. Analyzing different restriction conditions, we show that the height distributions of the interface are universal for all investigated dimensions. It means that fluctuations are not negligible and, consequently, the system is still below the upper critical dimension at d=6. The extrapolation of the data to dimensions d≥7 predicts that the upper critical dimension of the KPZ class is infinite.
Collapse
Affiliation(s)
- S G Alves
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - S C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| |
Collapse
|
28
|
de Assis TA, Aarão Reis FDA. Relaxation after a change in the interface growth dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062405. [PMID: 25019792 DOI: 10.1103/physreve.89.062405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 06/03/2023]
Abstract
The global effects of sudden changes in the interface growth dynamics are studied using models of the Edwards-Wilkinson (EW) and Kardar-Parisi-Zhang (KPZ) classes during their growth regimes in dimensions d=1 and d=2. Scaling arguments and simulation results are combined to predict the relaxation of the difference in the roughness of the perturbed and the unperturbed interfaces, ΔW^{2}∼s{c}t{-γ}, where s is the time of the change and t>s is the observation time after that event. The previous analytical solution for the EW-EW changes is reviewed and numerically discussed in the context of lattice models, with possible decays with γ=3/2 and γ=1/2. Assuming the dominant contribution to ΔW{2} to be predicted from a time shift in the final growth dynamics, the scaling of KPZ-KPZ changes with γ=1-2β and c=2β is predicted, where β is the growth exponent. Good agreement with simulation results in d=1 and d=2 is observed. A relation with the relaxation of a local autoresponse function in d=1 cannot be discarded, but very different exponents are shown in d=2. We also consider changes between different dynamics, with the KPZ-EW as a special case in which a faster growth, with dynamical exponent z_{i}, changes to a slower one, with exponent z. A scaling approach predicts a crossover time t_{c}∼s{z/z_{i}}≫s and ΔW{2}∼s{c}F(t/t_{c}), with the decay exponent γ=1/2 of the EW class. This rules out the simplified time shift hypothesis in d=2 dimensions. These results help to understand the remarkable differences in EW smoothing of correlated and uncorrelated surfaces, and the approach may be extended to sudden changes between other growth dynamics.
Collapse
Affiliation(s)
- T A de Assis
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
| | - F D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil
| |
Collapse
|
29
|
Kloss T, Canet L, Delamotte B, Wschebor N. Kardar-Parisi-Zhang equation with spatially correlated noise: a unified picture from nonperturbative renormalization group. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022108. [PMID: 25353423 DOI: 10.1103/physreve.89.022108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 06/04/2023]
Abstract
We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially correlated noise with power-law decay D(p) ∼ p(-2ρ) in Fourier space, using a nonperturbative renormalization group approach. We determine the full phase diagram of the system as a function of ρ and the dimension d. In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47, 14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above, we show that, for all values of ρ, there exists a unique strong-coupling SR fixed point that can be continuously followed as a function of d. We show in particular that the existence and the behavior of the LR fixed point do not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise.
Collapse
Affiliation(s)
- Thomas Kloss
- International Institute of Physics, UFRN, Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil
| | - Léonie Canet
- LPMMC, CNRS UMR 5493, Université Joseph Fourier Grenoble, Boîte Postale 166, 38042 Grenoble, France
| | - Bertrand Delamotte
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 7600, LPTMC, F-75005 Paris, France and CNRS, UMR 7600, LPTMC, F-75005 Paris, France
| | - Nicolás Wschebor
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 7600, LPTMC, F-75005 Paris, France and CNRS, UMR 7600, LPTMC, F-75005 Paris, France and Instituto de Física, Facultad de Ingeniería, Universidad de la República, J.H.y Reissig 565, 11000 Montevideo, Uruguay
| |
Collapse
|
30
|
Wio HS, Deza RR, Escudero C, Revelli JA. Invited review: KPZ. Recent developments via a variational formulation. PAPERS IN PHYSICS 2014. [DOI: 10.4279/pip.050010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
31
|
Halpin-Healy T. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042118. [PMID: 24229127 DOI: 10.1103/physreve.88.042118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/11/2013] [Indexed: 06/02/2023]
Abstract
Following our numerical work [Phys. Rev. Lett. 109, 170602 (2012)] focused upon the 2+1 Kardar-Parisi-Zhang (KPZ) equation with flat initial condition, we return here to study, in depth, the three-dimensional (3D) radial KPZ problem, comparing common scaling phenomena exhibited by the pt-pt directed polymer in a random medium (DPRM), the stochastic heat equation (SHE) with multiplicative noise in three dimensions, and kinetic roughening phenomena associated with 3D Eden clusters. Examining variants of the 3D DPRM, as well as numerically integrating, via the Itô prescription, the constrained SHE for different values of the KPZ coupling, we provide strong evidence for universality within this 3D KPZ class, revealing shared values for the limit distribution skewness and kurtosis, along with universal first and second moments. Our numerical analysis of the 3D SHE, well flanked by the DPRM results, appears without precedent in the literature. We consider, too, the 2+1 KPZ equation in the deeply evolved kinetically roughened stationary state, extracting the essential limit distribution characterizing fluctuations therein, revealing a higher-dimensional relative of the 1+1 KPZ Baik-Rains distribution. Complementary, corroborative findings are provided via the Gaussian DPRM, as well as the restricted-solid-on-solid model of stochastic growth, stalwart members of the 2+1 KPZ class. Next, contact is made with a recent nonperturbative, field-theoretic renormalization group calculation for the key universal amplitude ratio in this context. Finally, in the crossover from transient to stationary-state statistics, we observe a higher dimensional manifestation of the skewness minimum discovered by Takeuchi [Phys. Rev. Lett. 110, 210604 (2013)] in 1+1 KPZ class liquid-crystal experiments.
Collapse
Affiliation(s)
- Timothy Halpin-Healy
- Physics Department, Barnard College, Columbia University, New York, New York 10027, USA
| |
Collapse
|
32
|
Olejarz J, Krapivsky PL. Crystal growth inside an octant. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022109. [PMID: 24032777 DOI: 10.1103/physreve.88.022109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 06/02/2023]
Abstract
We study crystal growth inside an infinite octant on a cubic lattice. The growth proceeds through the deposition of elementary cubes into inner corners. After rescaling by the characteristic size, the interface becomes progressively more deterministic in the long-time limit. Utilizing known results for the crystal growth inside a two-dimensional corner, we propose a hyperbolic partial differential equation for the evolution of the limiting shape. This equation is interpreted as a Hamilton-Jacobi equation, which helps in finding an analytical solution. Simulations of the growth process are in excellent agreement with analytical predictions. We then study the evolution of the subleading correction to the volume of the crystal, the asymptotic growth of the variance of the volume of the crystal, and the total number of inner and outer corners. We also show how to generalize the results to arbitrary spatial dimension.
Collapse
Affiliation(s)
- Jason Olejarz
- Center for Polymer Studies, and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|