1
|
Johal RS, Rai R. Efficiency at optimal performance: A unified perspective based on coupled autonomous thermal machines. Phys Rev E 2022; 105:044145. [PMID: 35590654 DOI: 10.1103/physreve.105.044145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
We show that coupled autonomous thermal machines, in the presence of three heat reservoirs and following a global linear-irreversible description, can have efficiency at maximum power (EMP) which is analogous in form to the EMP of models with two (hot and cold) reservoirs. In particular, the temperature dependence of EMP in the coupled model is via only the ratio of hot and cold temperatures if the intermediate reservoir temperature is expressed as an algebraic mean of these temperatures. Many popular expressions of EMP in the literature can be recovered by making a choice of some standard mean. Further, the universal properties of EMP near equilibrium can be explained in terms of the properties of symmetric means. For the case of broken time-reversal symmetry, a universal second-order coefficient of 6/49 is predicted in the series expansion of EMP, analogous to the 1/8 coefficient in the time-reversal symmetric case.
Collapse
Affiliation(s)
- Ramandeep S Johal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Renuka Rai
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T), Panjab University, Sector 25, Chandigarh 160014, India
| |
Collapse
|
2
|
Li Z, Cao H, Yang H, Guo J. Comparative Assessment of Various Low-Dissipation Combined Models for Three-Terminal Heat Pump Systems. ENTROPY (BASEL, SWITZERLAND) 2021; 23:513. [PMID: 33922628 PMCID: PMC8147089 DOI: 10.3390/e23050513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/27/2022]
Abstract
Thermally driven heat pump systems play important roles in the utilization of low-grade thermal energy. In order to evaluate and compare the performances of three different constructions of thermally driven heat pump and heat transformer, the low-dissipation assumption has been adopted to establish the irreversible thermodynamic models of them in the present paper. By means of the proposed models, the heating loads, the coefficients of performance (COPs) and the optimal relations between them for various constructions are derived and discussed. The performances of different constructions are numerically assessed. More importantly, according to the results obtained, the upper and lower bounds of the COP at maximum heating load for different constructions are generated and compared by the introduction of a parameter measuring the deviation from the reversible limit of the system. Accordingly, the optimal constructions for the low-dissipation three-terminal heat pump and heat transformer are determined within the frame of low-dissipation assumption, respectively. The optimal constructions in accord with previous research and engineering practices for various three-terminal devices are obtained, which confirms the compatibility between the low-dissipation model and endoreversible model and highlights the validity of the application of low-dissipation model for multi-terminal thermodynamic devices. The proposed models and the significant results obtained enrich the theoretical thermodynamic model of thermally driven heat pump systems and may provide some useful guidelines for the design and operation of realistic thermally driven heat pump systems.
Collapse
Affiliation(s)
| | | | | | - Juncheng Guo
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China; (Z.L.); (H.C.); (H.Y.)
| |
Collapse
|
3
|
Chand S, Dasgupta S, Biswas A. Finite-time performance of a single-ion quantum Otto engine. Phys Rev E 2021; 103:032144. [PMID: 33862721 DOI: 10.1103/physreve.103.032144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
We study how a quantum heat engine based on a single trapped ion performs in finite time. The always-on thermal environment acts like the hot bath, while the motional degree of freedom of the ion plays the role of the effective cold bath. The hot isochoric stroke is implemented via the interaction of the ion with its hot environment, while a projective measurement of the internal state of the ion is performed as an equivalent to the cold isochoric stroke. The expansion and compression strokes are implemented via suitable change in applied magnetic field. We study in detail how the finite duration of each stroke affects the engine performance. We show that partial thermalization can in fact enhance the efficiency of the engine, due to the residual coherence, whereas faster expansion and compression strokes increase the inner friction and therefore reduce the efficiency.
Collapse
Affiliation(s)
- Suman Chand
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Shubhrangshu Dasgupta
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
4
|
Liu F, Su S. Stochastic Floquet quantum heat engines and stochastic efficiencies. Phys Rev E 2020; 101:062144. [PMID: 32688492 DOI: 10.1103/physreve.101.062144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Based on the notion of quantum trajectory, we present a stochastic theoretical framework for Floquet quantum heat engines. As an application, the large deviation functions of two types of stochastic efficiencies for a two-level Floquet quantum heat engine are investigated. We find that the statistics of one efficiency agree well with the predictions of the universal theory of efficiency fluctuations developed by Verley et al. [Phys. Rev. E 90, 052145 (2014)10.1103/PhysRevE.90.052145], whereas the statistics of the other efficiency do not. The reason for this discrepancy is attributed to the lack of fluctuation theorems for the latter type of efficiency.
Collapse
Affiliation(s)
- Fei Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Shanhe Su
- Department of Physics, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Gonzalez-Ayala J, Guo J, Medina A, Roco JMM, Hernández AC. Energetic Self-Optimization Induced by Stability in Low-Dissipation Heat Engines. PHYSICAL REVIEW LETTERS 2020; 124:050603. [PMID: 32083912 DOI: 10.1103/physrevlett.124.050603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
The local stability of a weakly dissipative heat engine is analyzed and linked to an energetic multi-objective optimization perspective. This constitutes a novel issue in the unified study of cyclic energy converters, opening the perspective to the possibility that stability favors self-optimization of thermodynamic quantities including efficiency, power and entropy generation. To this end, a dynamics simulating the restitution forces, which mimics a harmonic potential, bringing the system back to the steady state is analyzed. It is shown that relaxation trajectories are not arbitrary but driven by the improvement of several energetic functions. Insights provided by the statistical behavior of consecutive random perturbations show that the irreversible behavior works as an attractor for the energetics of the system, while the endoreversible limit acts as an upper bound and the Pareto front as a global attractor. Fluctuations around the operation regime reveal a difference between the behavior coming from fast and slow relaxation trajectories: while the former are associated to an energetic self-optimization evolution, the latter are ascribed to better performances. The self-optimization induced by stability and the possible use of instabilities in the operation regime to improve the energetic performance might usher into new useful perspectives in the control of variables for real engines.
Collapse
Affiliation(s)
- J Gonzalez-Ayala
- Departamento de Física Aplicada
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J Guo
- Departamento de Física Aplicada
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - A Medina
- Departamento de Física Aplicada
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J M M Roco
- Departamento de Física Aplicada
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - A Calvo Hernández
- Departamento de Física Aplicada
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
6
|
Chen JF, Sun CP, Dong H. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle. Phys Rev E 2020; 100:062140. [PMID: 31962481 DOI: 10.1103/physreve.100.062140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Indexed: 11/07/2022]
Abstract
The optimization of heat engines was intensively explored to achieve higher efficiency while maintaining the output power. However, most investigations were limited to a few finite-time cycles, e.g., the Carnot-like cycle, due to the complexity of the finite-time thermodynamics. In this paper, we propose a class of finite-time engine with quantum Otto cycle, and demonstrate a higher achievable efficiency at maximum power. The current model can be widely utilized, benefitting from the general C/τ^{2} scaling of extra work for a finite-time adiabatic process with long control time τ. We apply the adiabatic perturbation method to the quantum piston model and calculate the efficiency at maximum power, which is validated with an exact solution.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Chang-Pu Sun
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
7
|
Gonzalez-Ayala J, Guo J, Medina A, Roco JMM, Calvo Hernández A. Optimization induced by stability and the role of limited control near a steady state. Phys Rev E 2019; 100:062128. [PMID: 31962470 DOI: 10.1103/physreve.100.062128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 06/10/2023]
Abstract
A relationship between stability and self-optimization is found for weakly dissipative heat devices. The effect of limited control on operation variables around an steady state is such that, after instabilities, the paths toward relaxation are given by trajectories stemming from restitution forces which improve the system thermodynamic performance (power output, efficiency, and entropy generation). Statistics over random trajectories for many cycles shows this behavior as well. Two types of dynamics are analyzed, one where an stability basin appears and another one where the system is globally stable. Under both dynamics there is an induced trend in the control variables space due to stability. In the energetic space this behavior translates into a preference for better thermodynamic states, and thus stability could favor self-optimization under limited control. This is analyzed from the multiobjective optimization perspective. As a result, the statistical behavior of the system is strongly influenced by the Pareto front (the set of points with the best compromise between several objective functions) and the stability basin. Additionally, endoreversible and irreversible behaviors appear as very relevant limits: The first one is an upper bound in energetic performance, connected with the Pareto front, and the second one represents an attractor for the stochastic trajectories.
Collapse
Affiliation(s)
- J Gonzalez-Ayala
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J Guo
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - A Medina
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J M M Roco
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - A Calvo Hernández
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
8
|
Kloc M, Cejnar P, Schaller G. Collective performance of a finite-time quantum Otto cycle. Phys Rev E 2019; 100:042126. [PMID: 31771028 DOI: 10.1103/physreve.100.042126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
We study the finite-time effects in a quantum Otto cycle where a collective spin system is used as the working fluid. Starting from a simple one-qubit system we analyze the transition to the limit cycle in the case of a finite-time thermalization. If the system consists of a large sample of independent qubits interacting coherently with the heat bath, then the super-radiant equilibration is observed. We show that this phenomenon can boost the power of the engine. Mutual interaction of qubits in the working fluid is modeled by the Lipkin-Meshkov-Glick Hamiltonian. We demonstrate that in this case the quantum phase transitions for the ground and excited states may have a strong negative effect on the performance of the machine. Conversely, by analyzing the work output we can distinguish between the operational regimes with and without a phase transition.
Collapse
Affiliation(s)
- Michal Kloc
- Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague, 18000, Czech Republic
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Pavel Cejnar
- Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague, 18000, Czech Republic
| | - Gernot Schaller
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| |
Collapse
|
9
|
Singh V, Johal RS. Three-level laser heat engine at optimal performance with ecological function. Phys Rev E 2019; 100:012138. [PMID: 31499856 DOI: 10.1103/physreve.100.012138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/07/2022]
Abstract
Although classical and quantum heat engines work on entirely different fundamental principles, there is an underlying similarity. For instance, the form of efficiency at optimal performance may be similar for both types of engines. In this work, we study a three-level laser quantum heat engine operating at maximum ecological function (EF) which represents a compromise between the power output and the loss of power due to entropy production. We present numerical as well as analytic results for the global and local optimization of our laser engine in different operational regimes. Particularly, we observe that in low-temperature regimes, the three-level laser heat engine can be mapped to Feynman's ratchet and pawl model, a steady-state classical heat engine. Then we derive analytic expressions for efficiency under the assumptions of strong matter-field coupling and high bath temperatures. Upper and lower bounds on the efficiency exist in case of extreme asymmetric dissipation when the ratio of system-bath coupling constants at the hot and the cold contacts respectively approaches zero or infinity. These bounds have been established previously for various classical models of Carnot-like engines. Further, for weak (or intermediate) matter-field coupling in the high-temperature limit, we derive some new bounds on the efficiency of the engine. We conclude that while the engine produces at least 75% of the power output as compared with the maximum power conditions, the fractional loss of power is appreciably low in case of the engine operating at maximum EF, thus making this objective function relevant from an environmental point of view.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Physical Sciences, and Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli P. O. 140306, Punjab, India
| | - Ramandeep S Johal
- Department of Physical Sciences, and Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli P. O. 140306, Punjab, India
| |
Collapse
|
10
|
Francica G, Goold J, Plastina F. Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys Rev E 2019; 99:042105. [PMID: 31108617 DOI: 10.1103/physreve.99.042105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 06/09/2023]
Abstract
Exploiting the relative entropy of coherence, we isolate the coherent contribution in the energetics of a driven nonequilibrium quantum system. We prove that a division of the irreversible work can be made into a coherent and incoherent part. This provides an operational criterion for quantifying the coherent contribution in a generic nonequilibrium transformation on a closed quantum system. We then study such a contribution in two physical models of a driven qubit and kicked rotor. In addition, we also show that coherence generation is connected to the nonadiabaticity of a processes, for which it gives the dominant contribution for slow-enough transformations. The amount of generated coherence in the energy eigenbasis is equivalent to the change in diagonal entropy, and here we show that it fulfills a fluctuation theorem.
Collapse
Affiliation(s)
- G Francica
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo Collegato di Cosenza, 87036, Cosenza, Italy
| | - J Goold
- School of Physics, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - F Plastina
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo Collegato di Cosenza, 87036, Cosenza, Italy
| |
Collapse
|
11
|
Ye Z, Hu Y, He J, Wang J. Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms. Sci Rep 2017; 7:6289. [PMID: 28740216 PMCID: PMC5524852 DOI: 10.1038/s41598-017-06615-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/14/2017] [Indexed: 12/04/2022] Open
Abstract
We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (
Collapse
Affiliation(s)
- Zhuolin Ye
- Department of Physics, Nanchang University, Nanchang, 330031, China
| | - Yingying Hu
- Department of Physics, Nanchang University, Nanchang, 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang, 330031, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang, 330031, China.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
12
|
|
13
|
Gonzalez-Ayala J, Calvo Hernández A, Roco JMM. From maximum power to a trade-off optimization of low-dissipation heat engines: Influence of control parameters and the role of entropy generation. Phys Rev E 2017; 95:022131. [PMID: 28297927 DOI: 10.1103/physreve.95.022131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 06/06/2023]
Abstract
For a low-dissipation heat engine model we present the role of the partial contact times and the total operational time as control parameters to switch from maximum power state to maximum Ω trade-off state. The symmetry of the dissipation coefficients may be used in the design of the heat engine to offer, in such switching, a suitable compromise between efficiency gain, power losses, and entropy change. Bounds for entropy production, efficiency, and power output are presented for transitions between both regimes. In the maximum power and maximum Ω trade-off cases the relevant space of parameters are analyzed together with the configuration of minimum entropy production. A detailed analysis of the parameter's space shows physically prohibited regions in which there is no longer a heat engine and another region that is physically well behaved but is not suitable for possible optimization criteria.
Collapse
Affiliation(s)
| | - A Calvo Hernández
- Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain
| | - J M M Roco
- Departamento de Física Aplicada and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
14
|
|
15
|
Luo X, Liu N, Qiu T. Efficiency at maximum power of thermochemical engines with near-independent particles. Phys Rev E 2016; 93:032125. [PMID: 27078310 DOI: 10.1103/physreve.93.032125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 11/07/2022]
Abstract
Two-reservoir thermochemical engines are established by using near-independent particles (including Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein particles) as the working substance. Particle and heat fluxes can be formed based on the temperature and chemical potential gradients between two different reservoirs. A rectangular-type energy filter with width Γ is introduced for each engine to weaken the coupling between the particle and heat fluxes. The efficiency at maximum power of each particle system decreases monotonously from an upper bound η(+) to a lower bound η(-) when Γ increases from 0 to ∞. It is found that the η(+) values for all three systems are bounded by η(C)/2 ≤ η(+) ≤ η(C)/(2-η(C)) due to strong coupling, where η(C) is the Carnot efficiency. For the Bose-Einstein system, it is found that the upper bound is approximated by the Curzon-Ahlborn efficiency: η(CA)=1-sqrt[1-η(C)]. When Γ → ∞, the intrinsic maximum powers are proportional to the square of the temperature difference of the two reservoirs for all three systems, and the corresponding lower bounds of efficiency at maximum power can be simplified in the same form of η(-)=η(C)/[1+a(0)(2-η(C))].
Collapse
Affiliation(s)
- Xiaoguang Luo
- Department of Physics, Southeast University, 211189 Nanjing, China
| | - Nian Liu
- Department of Photoelectric Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Teng Qiu
- Department of Physics, Southeast University, 211189 Nanjing, China
| |
Collapse
|
16
|
Zhang Y, Huang C, Lin G, Chen J. Universality of efficiency at unified trade-off optimization. Phys Rev E 2016; 93:032152. [PMID: 27078337 DOI: 10.1103/physreve.93.032152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 06/05/2023]
Abstract
We calculate the efficiency at the unified trade-off optimization criterion (the so-called maximum Ω criterion) representing a compromise between the useful energy and the lost energy of heat engines operating between two reservoirs at different temperatures and chemical potentials, and demonstrate that the linear coefficient 3/4 and quadratic coefficient 1/32 of the efficiency at maximum Ω are universal for heat engines under strong coupling and symmetry conditions. It is further proved that the conclusions obtained here also apply to the ecological optimization criterion.
Collapse
Affiliation(s)
- Yanchao Zhang
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chuankun Huang
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Guoxing Lin
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jincan Chen
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
17
|
Abstract
We propose a quantum Otto cycle based on the properties of a two-level system in a realistic out-of-thermal-equilibrium electromagnetic field acting as its sole reservoir. This steady configuration is produced without the need of active control over the state of the environment, which is a noncoherent thermal radiation, sustained only by external heat supplied to macroscopic objects. Remarkably, even for nonideal finite-time transformations, it largely over-performs the standard ideal Otto cycle and asymptotically achieves unit efficiency at finite power.
Collapse
Affiliation(s)
- Bruno Leggio
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - Mauro Antezza
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France.,Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France
| |
Collapse
|
18
|
Altintas F, Müstecaplıoğlu ÖE. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022142. [PMID: 26382378 DOI: 10.1103/physreve.92.022142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 06/05/2023]
Abstract
We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.
Collapse
Affiliation(s)
- Ferdi Altintas
- Department of Physics, Abant Izzet Baysal University, Bolu, 14280, Turkey
| | | |
Collapse
|
19
|
Mandal A, Hunt KLC. Non-adiabatic current densities, transitions, and power absorbed by a molecule in a time-dependent electromagnetic field. J Chem Phys 2015. [PMID: 26203009 DOI: 10.1063/1.4923181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Anirban Mandal
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Katharine L. C. Hunt
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
20
|
Wang J, Ye Z, Lai Y, Li W, He J. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062134. [PMID: 26172688 DOI: 10.1103/physreve.91.062134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 06/04/2023]
Abstract
We propose and theoretically investigate a system of two coupled harmonic oscillators as a heat engine. We show how these two coupled oscillators within undamped regime can be controlled to realize an Otto cycle that consists of two adiabatic and two isochoric processes. During the two isochores the harmonic system is embedded in two heat reservoirs at constant temperatures T(h) and T(c)(<T(h)), respectively, and it is tuned slowly along a protocol to realize an adiabatic process. To illustrate the performance in finite time of the quantum heat engine, we adopt the semigroup approach to model the thermal relaxation dynamics along the two isochoric processes, and we find the upper bound of efficiency at maximum power (EMP) η* to be a function of the Carnot efficiency η(C)(=1-T(c)/T(h)): η*≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))], identical to those previously derived from ideal (noninteracting) microscopic, mesoscopic, and macroscopic systems.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuolin Ye
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yiming Lai
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Weisheng Li
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| |
Collapse
|
21
|
Wang J, Lai Y, Ye Z, He J, Ma Y, Liao Q. Four-level refrigerator driven by photons. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:050102. [PMID: 26066099 DOI: 10.1103/physreve.91.050102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 06/04/2023]
Abstract
We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q̇(c) and coefficient of performance (COP) η(COP) are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T→0.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yiming Lai
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Zhuolin Ye
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Qinghong Liao
- Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
22
|
Izumida Y, Okuda K, Roco JMM, Hernández AC. Heat devices in nonlinear irreversible thermodynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052140. [PMID: 26066152 DOI: 10.1103/physreve.91.052140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 06/04/2023]
Abstract
We present results obtained by using nonlinear irreversible models for heat devices. In particular, we focus on the global performance characteristics, the maximum efficiency and the efficiency at maximum power regimes for heat engines, and the maximum coefficient of performance (COP) and the COP at maximum cooling power regimes for refrigerators. We analyze the key role played by the interplay between irreversibilities coming from heat leaks and internal dissipations. We also discuss the relationship between these results and those obtained by different models.
Collapse
Affiliation(s)
- Y Izumida
- Department of Information Sciences, Ochanomizu University 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8620, Japan
| | - K Okuda
- Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - J M M Roco
- Departamento de Física Aplicada, and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - A Calvo Hernández
- Departamento de Física Aplicada, and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
23
|
Abstract
Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.
Collapse
Affiliation(s)
- Ronnie Kosloff
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel;
| | | |
Collapse
|
24
|
Sheng S, Tu ZC. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022136. [PMID: 25768487 DOI: 10.1103/physreve.91.022136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Indexed: 06/04/2023]
Abstract
We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible thermodynamics. For tight-coupling heat engines, a generic constitutive relation for nonlinear response accurate up to the quadratic order is derived from the stalling condition and the symmetry argument. By applying this generic nonlinear constitutive relation to finite-time thermodynamics, we obtain the necessary and sufficient condition for the universality of efficiency at maximum power, which states that a tight-coupling heat engine takes the universal efficiency at maximum power up to the quadratic order if and only if either the engine symmetrically interacts with two heat reservoirs or the elementary thermal energy flowing through the engine matches the characteristic energy of the engine. Hence we solve the following paradox: On the one hand, the quadratic term in the universal efficiency at maximum power for tight-coupling heat engines turned out to be a consequence of symmetry [Esposito, Lindenberg, and Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009); Sheng and Tu, Phys. Rev. E 89, 012129 (2014)]; On the other hand, typical heat engines such as the Curzon-Ahlborn endoreversible heat engine [Curzon and Ahlborn, Am. J. Phys. 43, 22 (1975)] and the Feynman ratchet [Tu, J. Phys. A 41, 312003 (2008)] recover the universal efficiency at maximum power regardless of any symmetry.
Collapse
Affiliation(s)
- Shiqi Sheng
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Z C Tu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Plastina F, Alecce A, Apollaro TJG, Falcone G, Francica G, Galve F, Lo Gullo N, Zambrini R. Irreversible work and inner friction in quantum thermodynamic processes. PHYSICAL REVIEW LETTERS 2014; 113:260601. [PMID: 25615295 DOI: 10.1103/physrevlett.113.260601] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 06/04/2023]
Abstract
We discuss the thermodynamics of closed quantum systems driven out of equilibrium by a change in a control parameter and undergoing a unitary process. We compare the work actually done on the system with the one that would be performed along ideal adiabatic and isothermal transformations. The comparison with the latter leads to the introduction of irreversible work, while that with the former leads to the introduction of inner friction. We show that these two quantities can be treated on an equal footing, as both can be linked with the heat exchanged in thermalization processes and both can be expressed as relative entropies. Furthermore, we show that a specific fluctuation relation for the entropy production associated with the inner friction exists, which allows the inner friction to be written in terms of its cumulants.
Collapse
Affiliation(s)
- F Plastina
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy and INFN-Gruppo collegato di Cosenza, Cosenza, Italy
| | - A Alecce
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy)
| | - T J G Apollaro
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy and INFN-Gruppo collegato di Cosenza, Cosenza, Italy and Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom
| | - G Falcone
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy and INFN-Gruppo collegato di Cosenza, Cosenza, Italy
| | - G Francica
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy and INFN-Gruppo collegato di Cosenza, Cosenza, Italy
| | - F Galve
- IFISC (UIB-CSIC), Instituto de Física Interdisciplinar y Sistemas Complejos, UIB Campus, E-07122 Palma de Mallorca, Spain
| | - N Lo Gullo
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy) and CNISM, Sezione di Padova, Italy
| | - R Zambrini
- IFISC (UIB-CSIC), Instituto de Física Interdisciplinar y Sistemas Complejos, UIB Campus, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
26
|
Wu F, He J, Ma Y, Wang J. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062134. [PMID: 25615071 DOI: 10.1103/physreve.90.062134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Indexed: 06/04/2023]
Abstract
We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures T(h) and T(c) (<T(h)). Although the behavior of spin-1/2 system differs substantially from that of the harmonic system in that they obey two typical quantum statistics, the efficiencies at maximum power based on these two different kinds of quantum systems are bounded from the upper side by the same expression η(mp)≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))] with η(C)=1-T(c)/T(h) as the Carnot efficiency. This expression η(mp) possesses the same universality of the CA efficiency η(CA)=1-√(1-η(C)) at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of η(CA) is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.
Collapse
Affiliation(s)
- Feilong Wu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China and State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Einax M, Nitzan A. Network Analysis of Photovoltaic Energy Conversion. THE JOURNAL OF PHYSICAL CHEMISTRY C 2014; 118:27226-27234. [DOI: 10.1021/jp5084373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Mario Einax
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Abraham Nitzan
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Yuan Y, Wang R, He J, Ma Y, Wang J. Coefficient of performance under maximum χ criterion in a two-level atomic system as a refrigerator. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052151. [PMID: 25493783 DOI: 10.1103/physreve.90.052151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 06/04/2023]
Abstract
A two-level atomic system as a working substance is used to set up a refrigerator consisting of two quantum adiabatic and two isochoric processes (two constant-frequency processes ω_{a} and ω_{b} with ω_{a}<ω_{b}), during which the two-level system is in contact with two heat reservoirs at temperatures T_{h} and T_{c}(<T_{h}). Considering finite-time operation of two isochoric processes, we derive analytical expressions for cooling rate R and coefficient of performance (COP) ɛ. The COP at maximum χ(=ɛR) figure of merit is numerically determined, and it is proved to be in nice agreement with the so-called Curzon and Ahlborn COP ɛ_{CA}=sqrt[1+ɛ_{C}]-1, where ɛ_{C}=T_{c}/(T_{h}-T_{c}) is the Carnot COP. In the high-temperature limit, the COP at maximum χ figure of merit, ɛ^{*}, can be expressed analytically by ɛ^{*}=ɛ_{+}≡(sqrt[9+8ɛ_{C}]-3)/2, which was derived previously as the upper bound of optimal COP for the low-dissipation or minimally nonlinear irreversible refrigerators. Within the context of irreversible thermodynamics, we prove that the value of ɛ_{+} is also the upper bound of COP at maximum χ figure of merit when we regard our model as a linear irreversible refrigerator.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Rui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China and State Key Laboratory of Surface Physics and Department of Physics, Shanghai 200433, China
| |
Collapse
|
29
|
Hu Y, Wu F, Ma Y, He J, Wang J, Hernández AC, Roco JMM. Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062115. [PMID: 24483394 DOI: 10.1103/physreve.88.062115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/18/2013] [Indexed: 06/03/2023]
Abstract
We study the coefficient of performance (COP) and its bounds for a Carnot-like refrigerator working between two heat reservoirs at constant temperatures T(h) and T(c), under two optimization criteria χ and Ω. In view of the fact that an "adiabatic" process usually takes finite time and is nonisentropic, the nonadiabatic dissipation and the finite time required for the adiabatic processes are taken into account by assuming low dissipation. For given optimization criteria, we find that the lower and upper bounds of the COP are the same as the corresponding ones obtained from the previous idealized models where any adiabatic process is undergone instantaneously with constant entropy. To describe some particular models with very fast adiabatic transitions, we also consider the influence of the nonadiabatic dissipation on the bounds of the COP, under the assumption that the irreversible entropy production in the adiabatic process is constant and independent of time. Our theoretical predictions match the observed COPs of real refrigerators more closely than the ones derived in the previous models, providing a strong argument in favor of our approach.
Collapse
Affiliation(s)
- Yong Hu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Feifei Wu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China and State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - A Calvo Hernández
- Departamento de Física Aplicada and Instituto Universitario de Física y Matemáticas (IUFFYM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - J M M Roco
- Departamento de Física Aplicada and Instituto Universitario de Física y Matemáticas (IUFFYM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
30
|
Gonzalez-Ayala J, Arias-Hernandez LA, Angulo-Brown F. Connection between maximum-work and maximum-power thermal cycles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052142. [PMID: 24329249 DOI: 10.1103/physreve.88.052142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/04/2013] [Indexed: 06/03/2023]
Abstract
A new connection between maximum-power Curzon-Ahlborn thermal cycles and maximum-work reversible cycles is proposed. This linkage is built through a mapping between the exponents of a class of heat transfer laws and the exponents of a family of heat capacities depending on temperature. This connection leads to the recovery of known results and to a wide and interesting set of results for a class of thermal cycles. Among other results it was found that it is possible to use analytically closed expressions for maximum-work efficiencies to calculate good approaches to maximum-power efficiencies. Behind the proposed connection is an interpretation of endoreversibility hypothesis. Additionally, we suggest that certain reversible maximum-work cycles depending on working substance can be used as reversible landmarks for FTT maximum-power cycles, which also depend on working substance properties.
Collapse
Affiliation(s)
- Julian Gonzalez-Ayala
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. No. 9, U. P. Zacatenco, 07738, México D.F., Mexico
| | - L A Arias-Hernandez
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. No. 9, U. P. Zacatenco, 07738, México D.F., Mexico
| | - F Angulo-Brown
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. No. 9, U. P. Zacatenco, 07738, México D.F., Mexico
| |
Collapse
|
31
|
|