1
|
Parisi DR, Wiebke LE, Mandl JN, Textor J. Flow rate resonance of actively deforming particles. Sci Rep 2023; 13:9455. [PMID: 37301896 DOI: 10.1038/s41598-023-36182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Lymphoid organs are unusual multicellular tissues: they are densely packed, but the lymphocytes trafficking through them are actively moving. We hypothesize that the intriguing ability of lymphocytes to avoid jamming and clogging is in part attributable to the dynamic shape changes that cells undergo when they move. In this work, we test this hypothesis by investigating an idealized system, namely, the flow of self-propelled, oscillating particles passing through a narrow constriction in two dimensions (2D), using numerical simulations. We found that deformation allows particles with these properties to flow through a narrow constriction in conditions when non-deformable particles would not be able to do so. Such a flowing state requires the amplitude and frequency of oscillations to exceed threshold values. Moreover, a resonance leading to the maximum flow rate was found when the oscillation frequency matched the natural frequency of the particle related to its elastic stiffness. To our knowledge, this phenomenon has not been described previously. Our findings could have important implications for understanding and controlling flow in a variety of systems in addition to lymphoid organs, such as granular flows subjected to vibration.
Collapse
Affiliation(s)
- Daniel R Parisi
- Instituto Tecnológico de Buenos Aires (ITBA), CONICET, C.A. de Buenos Aires, Argentina.
| | - Lucas E Wiebke
- Instituto Tecnológico de Buenos Aires (ITBA), C.A. de Buenos Aires, Argentina
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Johannes Textor
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Farag H, Peters B. Engulfment Avalanches and Thermal Hysteresis for Antifreeze Proteins on Supercooled Ice. J Phys Chem B 2023. [PMID: 37294871 DOI: 10.1021/acs.jpcb.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antifreeze proteins (AFPs) bind to the ice-water surface and prevent ice growth at temperatures below 0 °C through a Gibbs-Thomson effect. Each adsorbed AFP creates a metastable depression on the surface that locally resists ice growth, until ice engulfs the AFP. We recently predicted the susceptibility to engulfment as a function of AFP size, distance between AFPs, and supercooling [ J. Chem. Phys. 2023, 158, 094501]. For an ensemble of AFPs adsorbed on the ice surface, the most isolated AFPs are the most susceptible, and when an isolated AFP gets engulfed, its former neighbors become more isolated and more susceptible to engulfment. Thus, an initial engulfment event can trigger an avalanche of subsequent engulfment events, leading to a sudden surge of unrestrained ice growth. This work develops a model to predict the supercooling at which the first engulfment event will occur for an ensemble of randomly distributed AFP pinning sites on an ice surface. Specifically, we formulate an inhomogeneous survival probability that accounts for the AFP coverage, the distribution of AFP neighbor distances, the resulting ensemble of engulfment rates, the ice surface area, and the cooling rate. We use the model to predict thermal hysteresis trends and compare with experimental data.
Collapse
Affiliation(s)
- Hossam Farag
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Vani N, Escudier S, Sauret A. Influence of the solid fraction on the clogging by bridging of suspensions in constricted channels. SOFT MATTER 2022; 18:6987-6997. [PMID: 36069637 DOI: 10.1039/d2sm00962e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clogging can occur whenever a suspension of particles flows through a confined system. The formation of clogs is often correlated to a reduction in the cross-section of the channel. In this study, we consider the clogging by bridging, i.e., through the formation of a stable arch of particles at a constriction that hinders the transport of particles downstream of the clog. To characterize the role of the volume fraction of the suspension on the clogging dynamics, we study the flow of particulate suspensions through 3D-printed millifluidic devices. We systematically characterize the bridging of non-Brownian particles in a quasi-bidimensional system in which we directly visualize and track the particles as they flow and form arches at a constriction. We report the conditions for clogging by bridging when varying the constriction width to particle diameter ratio for different concentrations of the particles in suspension. We then discuss our results using a stochastic model to rationalize the influence of solid fraction on the probability of clogging. Understanding the mechanisms and conditions of clog formation is an important step for optimizing engineering design and developing more reliable dispensing systems.
Collapse
Affiliation(s)
- Nathan Vani
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Sacha Escudier
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
4
|
Ji L, Zhang H, Cornacchia L, Sala G, Scholten E. Effect of gelatinization and swelling degree on the lubrication behavior of starch suspensions. Carbohydr Polym 2022; 291:119523. [DOI: 10.1016/j.carbpol.2022.119523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
|
5
|
Hong X, Desmond KW, Chen D, Weeks ER. Clogging and avalanches in quasi-two-dimensional emulsion hopper flow. Phys Rev E 2022; 105:014603. [PMID: 35193244 DOI: 10.1103/physreve.105.014603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
We experimentally and computationally study the flow of a quasi-two-dimensional emulsion through a constricting hopper shape. Our area fractions are above jamming such that the droplets are always in contact with one another and are in many cases highly deformed. At the lowest flow rates, the droplets often clog and thus exit the hopper via intermittent avalanches. At the highest flow rates, the droplets exit continuously. The transition between these two types of behaviors is a fairly smooth function of the mean strain rate. The avalanches are characterized by a power-law distribution of the time interval between droplets exiting the hopper, with long intervals between the avalanches. Our computational studies reproduce the experimental observations by adding a flexible compliance to the system (in other words, a finite stiffness of the sample chamber). The compliance results in continuous flow at high flow rates, and allows the system to clog at low flow rates leading to avalanches. The computational results suggest that the interplay of the flow rate and compliance controls the presence or absence of the avalanches.
Collapse
Affiliation(s)
- Xia Hong
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Kenneth W Desmond
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Dandan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
6
|
Tao R, Wilson M, Weeks ER. Soft particle clogging in two-dimensional hoppers. Phys Rev E 2021; 104:044909. [PMID: 34781509 DOI: 10.1103/physreve.104.044909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
We study the outflow of soft particles through quasi-two-dimensional hoppers with both experiments and simulations. The experiments utilize spheres made with hydrogel, silicone rubber, and glass. The hopper chamber has an adjustable exit width and tilt angle (the latter to control the magnitude of gravitational forcing). Our simulation mimics the experiments using purely two-dimensional soft particles with viscous interactions but no friction. Results from both simulations and experiments demonstrate that clogging is easier for reduced gravitational force or stiffer particles. For particles with low or no friction, the average number of particles in a clogging arch depends only on the ratio between hopper exit width and the mean particle diameter. In contrast, for the silicone rubber particles with larger frictional interactions, arches have more particles than the low friction cases. Additionally, an analysis of the number of particles left in the hopper when clogging occurs provides evidence for a hydrostatic pressure effect that is relevant for the clogging of soft particles, but less so for the harder (glass) or frictional (silicone rubber) particles.
Collapse
Affiliation(s)
- Ran Tao
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Madelyn Wilson
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
7
|
Li Z, Yang H, Sun Z, Espinoza DN, Balhoff MT. A Probability-Based Pore Network Model of Particle Jamming in Porous Media. Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
|
9
|
Qi M, Li M, Moghanloo RG, Guo T. A novel simulation approach for particulate flows during filtration. AIChE J 2021. [DOI: 10.1002/aic.17136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minhui Qi
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao China
- Mewbourne School of Petroleum and Geological Engineering The University of Oklahoma Norman Oklahoma USA
| | - Mingzhong Li
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao China
| | - Rouzbeh G. Moghanloo
- Mewbourne School of Petroleum and Geological Engineering The University of Oklahoma Norman Oklahoma USA
| | - Tiankui Guo
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao China
| |
Collapse
|
10
|
Xu S, Sun H, Cai Y, Geng X. Studying the orifice jamming of a polydispersed particle system via coupled CFD–DEM simulations. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Areán MG, Boschan A, Cachile MA, Aguirre MA. Granular flow through an aperture: Influence of obstacles near the outlet. Phys Rev E 2020; 101:022901. [PMID: 32168580 DOI: 10.1103/physreve.101.022901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/20/2019] [Indexed: 11/07/2022]
Abstract
We study how the presence of obstacles in a confined system of monodisperse disks affects their discharge through an aperture. The disks are driven by a horizontal conveyor belt that moves at constant velocity. The mean packing fraction at the outlet decreases as the distance between the obstacles and the aperture decreases. The obstacles organize the dynamics of the stagnant zones in two characteristic behaviors that differ mainly in the magnitude of the fluctuations of the fraction of stagnant disks in the system. It is shown that the effective aperture is reduced by the presence of obstacles.
Collapse
Affiliation(s)
- M G Areán
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| | - A Boschan
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires, CONICET, Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| | - M A Cachile
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires, CONICET, Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| | - M A Aguirre
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires, CONICET, Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| |
Collapse
|
12
|
Zhao Y, Cocco RA, Yang S, Chew JW. DEM Study on the effect of particle‐size distribution on jamming in a 3D conical hopper. AIChE J 2018. [DOI: 10.1002/aic.16483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ya Zhao
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Ray A. Cocco
- Particulate Solids Research Incorporated Chicago Illinois 60632
| | - Shiliang Yang
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
- Singapore Membrane Technology CenterNanyang Environment and Water Research Institute, Nanyang Technological University Singapore 637141 Singapore
| |
Collapse
|
13
|
Marin A, Lhuissier H, Rossi M, Kähler CJ. Clogging in constricted suspension flows. Phys Rev E 2018; 97:021102. [PMID: 29548190 DOI: 10.1103/physreve.97.021102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 06/08/2023]
Abstract
The flow of a charged-stabilized suspension through a single constricted channel is studied experimentally by tracking the particles individually. Surprisingly, the behavior is found to be qualitatively similar to that of inertial dry granular systems: For small values of the neck-to-particle size ratio (D/d<3), clogs form randomly as arches of the particle span the constriction. The statistics of the clogging events are Poissonian as reported for granular systems and agree for moderate particle volume fraction (ϕ≈20%) with a simple stochastic model for the number of particles at the neck. For larger neck sizes (D/d>3), even at the largest ϕ(≈60%) achievable in the experiments, an uninterrupted particle flow is observed, which resembles that of an hourglass. This particularly small value of D/d(≃3) at the transition to a practically uninterrupted flow is attributed to the low effective friction between the particles, achieved by the particle's functionalization and lubrication.
Collapse
Affiliation(s)
- Alvaro Marin
- Physics of Fluids, University of Twente, The Netherlands
| | | | - Massimiliano Rossi
- Institut für Strömungsmechanik und Aerodynamik, Bundeswehr University Munich, Munich, Germany
| | - Christian J Kähler
- Institut für Strömungsmechanik und Aerodynamik, Bundeswehr University Munich, Munich, Germany
| |
Collapse
|
14
|
Hong X, Kohne M, Morrell M, Wang H, Weeks ER. Clogging of soft particles in two-dimensional hoppers. Phys Rev E 2017; 96:062605. [PMID: 29347308 DOI: 10.1103/physreve.96.062605] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Using experiments and simulations, we study the flow of soft particles through quasi-two-dimensional hoppers. The first experiment uses oil-in-water emulsion droplets in a thin sample chamber. Due to surfactants coating the droplets, they easily slide past each other, approximating soft frictionless disks. For these droplets, clogging at the hopper exit requires a narrow hopper opening only slightly larger than the droplet diameter. The second experiment uses soft hydrogel particles in a thin sample chamber, where we vary gravity by changing the tilt angle of the chamber. For reduced gravity, clogging becomes easier and can occur for larger hopper openings. Our simulations mimic the emulsion experiments and demonstrate that softness is a key factor controlling clogging: with stiffer particles or a weaker gravitational force, clogging is easier. The fractional amount a single particle is deformed under its own weight is a useful parameter measuring particle softness. Data from the simulation and hydrogel experiments collapse when compared using this parameter. Our results suggest that prior studies using hard particles were in a limit where the role of softness is negligible, which causes clogging to occur with significantly larger openings.
Collapse
Affiliation(s)
- Xia Hong
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Meghan Kohne
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Mia Morrell
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Haoran Wang
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
15
|
Zuriguel I, Janda Á, Arévalo R, Maza D, Garcimartín Á. Clogging and unclogging of many-particle systems passing through a bottleneck. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714001002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Burel M, Martin S, Bonnefoy O. Jamming/flowing transition of non-Brownian particles suspended in a iso-density fluid flowing in a 2D rectangular duct. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714003086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Koivisto J, Durian DJ. Effect of interstitial fluid on the fraction of flow microstates that precede clogging in granular hoppers. Phys Rev E 2017; 95:032904. [PMID: 28415287 DOI: 10.1103/physreve.95.032904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/07/2023]
Abstract
We report on the nature of flow events for the gravity-driven discharge of glass beads through a hole that is small enough that the hopper is susceptible to clogging. In particular, we measure the average and standard deviation of the distribution of discharged masses as a function of both hole and grain sizes. We do so in air, which is usual, but also with the system entirely submerged under water. This damps the grain dynamics and could be expected to dramatically affect the distribution of the flow events, which are described in prior work as avalanche-like. Though the flow is slower and the events last longer, we find that the average discharge mass is only slightly reduced for submerged grains. Furthermore, we find that the shape of the distribution remains exponential, implying that clogging is still a Poisson process even for immersed grains. Per Thomas and Durian [Phys. Rev. Lett. 114, 178001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.178001], this allows for an interpretation of the average discharge mass in terms of the fraction of flow microstates that precede, i.e., that effectively cause, a stable clog to form. Since this fraction is barely altered by water, we conclude that the crucial microscopic variables are the grain positions; grain momenta play only a secondary role in destabilizing weak incipient arches. These insights should aid ongoing efforts to understand the susceptibility of granular hoppers to clogging.
Collapse
Affiliation(s)
- Juha Koivisto
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | - Douglas J Durian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| |
Collapse
|
18
|
Abstract
Porous two-dimensional crystals offer many promises for water desalination applications. For computer simulation to play a predictive role in this area, however, one needs to have reliable methods for simulating an atomistic system with hydrodynamic currents and interpretative tools to relate microscopic interactions to emergent macroscopic dynamical quantities, such as friction, slip length, and permeability. In this article, we use Gaussian dynamics, a nonequilibrium molecular dynamics method that provides microscopic insights into the interactions that control the flows of both simple liquids and liquid water through atomically small channels. In simulations of aqueous transport, we mimic the effect of changing the membrane chemical composition by adjusting the attractive strength of the van der Waals interactions between the membrane atoms and water. We find that the wetting contact angle, a common measure of a membrane's hydrophobicity, does not predict the permeability of a membrane. Instead, the hydrophobic effect is subtle, with both static and dynamic effects that can both help and hinder water transport through these materials. The competition between the static and dynamical hydrophobicity balances an atomic membrane's tendency to wet against hydrodynamic friction, and determines an optimal contact angle for water passage through nonpolar membranes. To a reasonable approximation, the optimal contact angle depends only on the aspect ratio of the pore. We also find that water molecules pass through the most hydrophobic membranes in a punctuated series of bursts that are separated by long pauses. A continuous-time Markov model of these data provides evidence of a molecular analogue to the clogging transition, a phenomenon observed in driven granular flows.
Collapse
Affiliation(s)
- Steven E Strong
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel D Eaves
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
19
|
Abstract
The transport of suspensions of microparticles in confined environments is associated with complex phenomena at the interface of fluid mechanics and soft matter. Indeed, the deposition and assembly of particles under flow involve hydrodynamic, steric and colloidal forces, and can lead to the clogging of microchannels. The formation of clogs dramatically alters the performance of both natural and engineered systems, effectively limiting the use of microfluidic technology. While the fouling of porous filters has been studied at the macroscopic level, it is only recently that the formation of clogs has been considered at the pore-scale, using microfluidic devices. In this review, we present the clogging mechanisms recently reported for suspension flows of colloidal particles and for biofluids in microfluidic channels, including sieving, bridging and aggregation of particles. We discuss the technological implications of the clogging of microchannels and the schemes that leverage the formation of clogs. We finally consider some of the outstanding challenges involving clogging in human health, which could be tackled with microfluidic methods.
Collapse
Affiliation(s)
- Emilie Dressaire
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Alban Sauret
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA. and Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, 93303 Aubervilliers, France
| |
Collapse
|
20
|
Abstract
The different hydrate–fluid–solid interactions that play critical roles in all energy applications of hydrate research.
Collapse
Affiliation(s)
- Zachary M. Aman
- School of Mechanical and Chemical Engineering
- University of Western Australia
- Crawley WA
- Australia
| | - Carolyn A. Koh
- Colorado School of Mines
- Center for Hydrate Research
- Department of Chemical and Biological Engineering
- Golden CO
- USA
| |
Collapse
|
21
|
Lumay G, Schockmel J, Henández-Enríquez D, Dorbolo S, Vandewalle N, Pacheco-Vázquez F. Flow of magnetic repelling grains in a two-dimensional silo. PAPERS IN PHYSICS 2015. [DOI: 10.4279/pip.070013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
22
|
Aman ZM, Sloan ED, Sum AK, Koh CA. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces. Phys Chem Chem Phys 2015; 16:25121-8. [PMID: 25332072 DOI: 10.1039/c4cp02927e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.
Collapse
Affiliation(s)
- Zachary M Aman
- Centre for Energy, Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Australia.
| | | | | | | |
Collapse
|
23
|
|
24
|
Clogging transition of many-particle systems flowing through bottlenecks. Sci Rep 2014; 4:7324. [PMID: 25471601 PMCID: PMC4255180 DOI: 10.1038/srep07324] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
When a large set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We show that in systems of very different nature and scale -including sheep herds, pedestrian crowds, assemblies of grains, and colloids- the probability distribution of time lapses between the passages of consecutive bodies exhibits a power-law tail with an exponent that depends on the system condition. Consequently, we identify the transition to clogging in terms of the divergence of the average time lapse. Such a unified description allows us to put forward a qualitative clogging state diagram whose most conspicuous feature is the presence of a length scale qualitatively related to the presence of a finite size orifice. This approach helps to understand paradoxical phenomena, such as the faster-is-slower effect predicted for pedestrians evacuating a room and might become a starting point for researchers working in a wide variety of situations where clogging represents a hindrance.
Collapse
|
25
|
Wilson TJ, Pfeifer CR, Mesyngier N, Durian DJ. Granular discharge rate for submerged hoppers. PAPERS IN PHYSICS 2014. [DOI: 10.4279/pip.060009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
26
|
Aguirre MA, De Schant R, Géminard JC. Granular flow through an aperture: influence of the packing fraction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012203. [PMID: 25122295 DOI: 10.1103/physreve.90.012203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 06/03/2023]
Abstract
For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.
Collapse
Affiliation(s)
- M A Aguirre
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires. Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| | - R De Schant
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires. Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| | - J-C Géminard
- Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| |
Collapse
|