1
|
Patel MH, Sampath S, Kapoor A, Damani DN, Chellapuram N, Challa AB, Kaur MP, Walton RD, Stavrakis S, Arunachalam SP, Kulkarni K. Advances in Cardiac Pacing: Arrhythmia Prediction, Prevention and Control Strategies. Front Physiol 2021; 12:783241. [PMID: 34925071 PMCID: PMC8674736 DOI: 10.3389/fphys.2021.783241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac arrhythmias constitute a tremendous burden on healthcare and are the leading cause of mortality worldwide. An alarming number of people have been reported to manifest sudden cardiac death as the first symptom of cardiac arrhythmias, accounting for about 20% of all deaths annually. Furthermore, patients prone to atrial tachyarrhythmias such as atrial flutter and fibrillation often have associated comorbidities including hypertension, ischemic heart disease, valvular cardiomyopathy and increased risk of stroke. Technological advances in electrical stimulation and sensing modalities have led to the proliferation of medical devices including pacemakers and implantable defibrillators, aiming to restore normal cardiac rhythm. However, given the complex spatiotemporal dynamics and non-linearity of the human heart, predicting the onset of arrhythmias and preventing the transition from steady state to unstable rhythms has been an extremely challenging task. Defibrillatory shocks still remain the primary clinical intervention for lethal ventricular arrhythmias, yet patients with implantable cardioverter defibrillators often suffer from inappropriate shocks due to false positives and reduced quality of life. Here, we aim to present a comprehensive review of the current advances in cardiac arrhythmia prediction, prevention and control strategies. We provide an overview of traditional clinical arrhythmia management methods and describe promising potential pacing techniques for predicting the onset of abnormal rhythms and effectively suppressing cardiac arrhythmias. We also offer a clinical perspective on bridging the gap between basic and clinical science that would aid in the assimilation of promising anti-arrhythmic pacing strategies.
Collapse
Affiliation(s)
- Mehrie Harshad Patel
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Shrikanth Sampath
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Anoushka Kapoor
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | | | - Nikitha Chellapuram
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | | | - Manmeet Pal Kaur
- Department of Medicine, GAIL, Mayo Clinic, Rochester, MN, United States
| | - Richard D. Walton
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shivaram P. Arunachalam
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
- Department of Medicine, GAIL, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Kanchan Kulkarni
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Bordeaux, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Lai PY. Reconstructing network topology and coupling strengths in directed networks of discrete-time dynamics. Phys Rev E 2017; 95:022311. [PMID: 28297975 DOI: 10.1103/physreve.95.022311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 05/22/2023]
Abstract
Reconstructing network connection topology and interaction strengths solely from measurement of the dynamics of the nodes is a challenging inverse problem of broad applicability in various areas of science and engineering. For a discrete-time step network under noises whose noise-free dynamics is stationary, we derive general analytic results relating the weighted connection matrix of the network to the correlation functions obtained from time-series measurements of the nodes for networks with one-dimensional intrinsic node dynamics. Information about the intrinsic node dynamics and the noise strengths acting on the nodes can also be obtained. Based on these results, we develop a scheme that can reconstruct the above information of the network using only the time-series measurements of node dynamics as input. Reconstruction formulas for higher-dimensional node dynamics are also derived and illustrated with a two-dimensional node dynamics network system. Furthermore, we extend our results and obtain a reconstruction scheme even for the cases when the noise-free dynamics is periodic. We demonstrate that our method can give accurate reconstruction results for weighted directed networks with linear or nonlinear node dynamics of various connection topologies, and with linear or nonlinear couplings.
Collapse
Affiliation(s)
- Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Chung-Li District, Taoyuan City 320, Taiwan, Republic of China
| |
Collapse
|
3
|
Ching ESC, Lai PY, Leung CY. Reconstructing weighted networks from dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:030801. [PMID: 25871037 DOI: 10.1103/physreve.91.030801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 05/22/2023]
Abstract
We present a method that reconstructs both the links and their relative coupling strength of bidirectional weighted networks. Our method requires only measurements of node dynamics as input. Using several examples, we demonstrate that our method can give accurate results for weighted random and weighted scale-free networks with both linear and nonlinear dynamics.
Collapse
Affiliation(s)
- Emily S C Ching
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, Republic of China
- Physics Division, National Center for Theoretical Sciences, Kuang Fu Road 101, Hsinchu, Taiwan 300, Republic of China
| | - C Y Leung
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
4
|
Yapari F, Deshpande D, Belhamadia Y, Dubljevic S. Control of cardiac alternans by mechanical and electrical feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012706. [PMID: 25122334 DOI: 10.1103/physreve.90.012706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Indexed: 06/03/2023]
Abstract
A persistent alternation in the cardiac action potential duration has been linked to the onset of ventricular arrhythmia, which may lead to sudden cardiac death. A coupling between these cardiac alternans and the intracellular calcium dynamics has also been identified in previous studies. In this paper, the system of PDEs describing the small amplitude of alternans and the alternation of peak intracellular Ca(2+) are stabilized by optimal boundary and spatially distributed actuation. A simulation study demonstrating the successful annihilation of both alternans on a one-dimensional cable of cardiac cells by utilizing the full-state feedback controller is presented. Complimentary to these studies, a three variable Nash-Panfilov model is used to investigate alternans annihilation via mechanical (or stretch) perturbations. The coupled model includes the active stress which defines the mechanical properties of the tissue and is utilized in the feedback algorithm as an independent input from the pacing based controller realization in alternans annihilation. Simulation studies of both control methods demonstrate that the proposed methods can successfully annihilate alternans in cables that are significantly longer than 1 cm, thus overcoming the limitations of earlier control efforts.
Collapse
Affiliation(s)
- Felicia Yapari
- Deparment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
| | - Dipen Deshpande
- Deparment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
| | - Youssef Belhamadia
- Campus Saint-Jean and Department of Mathematics, University of Alberta, Edmonton, Alberta, T6C 4G9 Canada
| | - Stevan Dubljevic
- Deparment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 Canada
| |
Collapse
|