1
|
Svensson P, Campbell T, Graziani F, Moldabekov Z, Lyu N, Batista VS, Richardson S, Vinko SM, Gregori G. Development of a new quantum trajectory molecular dynamics framework. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220325. [PMID: 37393934 PMCID: PMC10315217 DOI: 10.1098/rsta.2022.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 07/04/2023]
Abstract
An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalized Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its numerical implementation with good parallel support and close to linear scaling in particle number, used for comparisons with the more common wave packet employing isotropic states. Ground state and thermal properties are compared between the models with differences occurring primarily in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is investigated where a 15% increase in DC conductivity can be seen in our wave packet model compared with other models. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Pontus Svensson
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Thomas Campbell
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Frank Graziani
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Zhandos Moldabekov
- Center of Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Yale Quantum Institute, Yale University, New Haven, CT 06511, USA
| | | | - Sam M Vinko
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Gianluca Gregori
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
2
|
Angermeier WA, Scheiner BS, Shaffer NR, White TG. Disentangling the effects of non-adiabatic interactions upon ion self-diffusion within warm dense hydrogen. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20230034. [PMID: 37393932 DOI: 10.1098/rsta.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023]
Abstract
Warm dense matter is a material state in the region of parameter space connecting condensed matter to classical plasma physics. In this intermediate regime, we investigate the significance of non-adiabatic electron-ion interactions upon ion dynamics. To disentangle non-adiabatic from adiabatic electron-ion interactions, we compare the ion self-diffusion coefficient from the non-adiabatic electron force field computational model with an adiabatic, classical molecular dynamics simulation. A classical pair potential developed through a force-matching algorithm ensures the only difference between the models is due to the electronic inertia. We implement this new method to characterize non-adiabatic effects on the self-diffusion of warm dense hydrogen over a wide range of temperatures and densities. Ultimately we show that the impact of non-adiabatic effects is negligible for equilibrium ion dynamics in warm dense hydrogen. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
| | | | - Nathaniel R Shaffer
- Laboratory for Laser Energetics, University of Rochester,Rochester, NY 14623, USA
| | - Thomas G White
- Department of Physics, University of Nevada, Reno NV 89557, USA
| |
Collapse
|
3
|
Lavrinenko Y, Levashov PR, Minakov DV, Morozov IV, Valuev IA. Equilibrium properties of warm dense deuterium calculated by the wave packet molecular dynamics and density functional theory method. Phys Rev E 2021; 104:045304. [PMID: 34781451 DOI: 10.1103/physreve.104.045304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 11/07/2022]
Abstract
A joint simulation method based on the wave packet molecular dynamics and density functional theory (WPMD-DFT) is applied to study warm dense deuterium (nonideal deuterium plasmas). This method was developed recently as an extension of the wave packet molecular dynamics (WPMD) in which the equations of motion are solved simultaneously for classical ions and semiclassical electrons represented as Gaussian wave packets. Compared to the classical molecular dynamics and WPMD simulations, the method of WPMD-DFT provides a more accurate representation of quantum effects such as electron-ion coupling and electron degeneracy. It allows studying nonadiabatic dynamics of electrons and ions in equilibrium and nonequilibrium states while being more accurate and efficient at high densities than WPMD and classical molecular dynamics. In the paper, we discuss particular features of the method such as special boundary conditions and the procedure of isentrope calculation as well as the results obtained by WPMD-DFT for the shock-compressed deuterium. The compression isentrope and principal Hugoniot curves obtained by WPMD-DFT are compared with available experimental data and other simulation approaches to validate the method. It opens up a possibility of further application of the method to study nonequilibrium states and relaxation processes.
Collapse
Affiliation(s)
- Yaroslav Lavrinenko
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Pavel R Levashov
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Dmitry V Minakov
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Igor V Morozov
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ilya A Valuev
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia
| |
Collapse
|
4
|
An Investigation into the Approximations Used in Wave Packet Molecular Dynamics for the Study of Warm Dense Matter. PLASMA 2021. [DOI: 10.3390/plasma4020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool with which to study dynamical processes in warm dense matter beyond the Born–Oppenheimer approximation. These techniques, typically, employ many approximations to achieve computational efficiency while implementing semi-empirical scaling parameters to retain accuracy. We investigated three of the main approximations ubiquitous to WPMD: a restricted basis set, approximations to exchange, and the lack of correlation. We examined each of these approximations in regard to atomic and molecular hydrogen in addition to a dense hydrogen plasma. We found that the biggest improvement to WPMD comes from combining a two-Gaussian basis with a semi-empirical correction based on the valence-bond wave function. A single parameter scales this correction to match experimental pressures of dense hydrogen. Ultimately, we found that semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD. However, reducing the scaling parameters for more ab-initio terms gives more accurate results and displays the underlying physics more readily.
Collapse
|
5
|
Ma Q, Dai J, Kang D, Murillo MS, Hou Y, Zhao Z, Yuan J. Extremely Low Electron-ion Temperature Relaxation Rates in Warm Dense Hydrogen: Interplay between Quantum Electrons and Coupled Ions. PHYSICAL REVIEW LETTERS 2019; 122:015001. [PMID: 31012692 DOI: 10.1103/physrevlett.122.015001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Theoretical and computational modeling of nonequilibrium processes in warm dense matter represents a significant challenge. The electron-ion relaxation process in warm dense hydrogen is investigated here by nonequilibrium molecular dynamics using the constrained electron force field (CEFF) method. CEFF evolves wave packets that incorporate dynamic quantum diffraction that obviates the Coulomb catastrophe. Predictions from this model reveal temperature relaxation times as much as three times longer than prior molecular dynamics results based on quantum statistical potentials. Through analyses of energy distributions and mean free paths, this result can be traced to delocalization. Finally, an improved GMS [Gericke, Murillo, and Schlanges, Phys. Rev. E 78, 025401 (2008)PRESCM1539-375510.1103/PhysRevE.78.025401] model is proposed, in which the Coulomb logarithms are in good agreement with CEFF results.
Collapse
Affiliation(s)
- Qian Ma
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
| | - Jiayu Dai
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
| | - Dongdong Kang
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yong Hou
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
| | - Zengxiu Zhao
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
| | - Jianmin Yuan
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
- Graduate School of China Academy of Engineering Physics, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Kang D, Dai J. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:073002. [PMID: 29186001 DOI: 10.1088/1361-648x/aa9e29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.
Collapse
Affiliation(s)
- Dongdong Kang
- Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | | |
Collapse
|
7
|
Gholami E, Lashkami ZM. Noise, delocalization, and quantum diffusion in one-dimensional tight-binding models. Phys Rev E 2017; 95:022216. [PMID: 28297941 DOI: 10.1103/physreve.95.022216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 06/06/2023]
Abstract
As an unusual type of anomalous diffusion behavior, namely (transient) superballistic transport, has been experimentally observed recently, but it is not yet well understood. In this paper, we investigate the white noise effect (in the Markov approximation) on quantum diffusion in one-dimensional tight-binding models with a periodic, disordered, and quasiperiodic region of size L attached to two perfect lattices at both ends in which the wave packet is initially located at the center of the sublattice. We find that in a completely localized system, inducing noise could delocalize the system to a desirable diffusion phase. This controllable system may be used to investigate the interplay of disorder and white noise, as well as to explore an exotic quantum phase.
Collapse
Affiliation(s)
- Ehsan Gholami
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
8
|
Dharuman G, Verboncoeur J, Christlieb A, Murillo MS. Atomic bound state and scattering properties of effective momentum-dependent potentials. Phys Rev E 2016; 94:043205. [PMID: 27841554 DOI: 10.1103/physreve.94.043205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Effective classical dynamics provide a potentially powerful avenue for modeling large-scale dynamical quantum systems. We have examined the accuracy of a Hamiltonian-based approach that employs effective momentum-dependent potentials (MDPs) within a molecular-dynamics framework through studies of atomic ground states, excited states, ionization energies, and scattering properties of continuum states. Working exclusively with the Kirschbaum-Wilets (KW) formulation with empirical MDPs [C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21, 834 (1980)0556-279110.1103/PhysRevA.21.834], optimization leads to very accurate ground-state energies for several elements (e.g., N, F, Ne, Al, S, Ar, and Ca) relative to Hartree-Fock values. The KW MDP parameters obtained are found to be correlated, thereby revealing some degree of transferability in the empirically determined parameters. We have studied excited-state orbits of electron-ion pair to analyze the consequences of the MDP on the classical Coulomb catastrophe. From the optimized ground-state energies, we find that the experimental first- and second-ionization energies are fairly well predicted. Finally, electron-ion scattering was examined by comparing the predicted momentum transfer cross section to a semiclassical phase-shift calculation; optimizing the MDP parameters for the scattering process yielded rather poor results, suggesting a limitation of the use of the KW MDPs for plasmas.
Collapse
Affiliation(s)
- Gautham Dharuman
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - John Verboncoeur
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew Christlieb
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- New Mexico Consortium, Los Alamos, New Mexico 87544, USA
- Computational Physics and Methods Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
9
|
Kong X, Markmann A, Batista VS. Time-Sliced Thawed Gaussian Propagation Method for Simulations of Quantum Dynamics. J Phys Chem A 2016; 120:3260-9. [DOI: 10.1021/acs.jpca.5b12192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiangmeng Kong
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520-8107, United States
| | - Andreas Markmann
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
10
|
Valuev IA, Morozov IV. Extension of the wave packet molecular dynamics method towards the accurate quantum simulations of electron dynamics. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/653/1/012153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Graziani FR, Bauer JD, Murillo MS. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033104. [PMID: 25314544 DOI: 10.1103/physreve.90.033104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Indexed: 06/04/2023]
Abstract
Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations.
Collapse
Affiliation(s)
- F R Graziani
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - J D Bauer
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - M S Murillo
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| |
Collapse
|