1
|
Li A, Sun X, Zhu S, Zhu F. Random walks on scale-free flowers with stochastic resetting. CHAOS (WOODBURY, N.Y.) 2025; 35:013124. [PMID: 39792698 DOI: 10.1063/5.0242793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
This study explores the impact of stochastic resetting on the random walk dynamics within scale-free (u,v)-flowers. Utilizing the generating function technique, we develop a recursive relationship for the generating function of the first passage time and establish a connection between the mean first passage time with and without resetting. Our investigation spans multiple scenarios, with the random walker starting from various positions and aiming to reach different target nodes, allowing us to identify the optimal resetting probability that minimizes the mean first passage time for each case. We demonstrate that stochastic resetting significantly improves search efficiency, especially in larger networks. These findings underscore the effectiveness of stochastic resetting as a strategy for optimizing search algorithms in complex networks, offering valuable applications in domains such as biological transport, data networks, and search processes where rapid and efficient exploration is vital.
Collapse
Affiliation(s)
- Anlin Li
- School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohan Sun
- School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shaoxiang Zhu
- School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feng Zhu
- School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Wei Q, Wang W, Tang Y, Metzler R, Chechkin A. Fractional Langevin equation far from equilibrium: Riemann-Liouville fractional Brownian motion, spurious nonergodicity, and aging. Phys Rev E 2025; 111:014128. [PMID: 39972787 DOI: 10.1103/physreve.111.014128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025]
Abstract
We consider the fractional Langevin equation far from equilibrium (FLEFE) to describe stochastic dynamics which do not obey the fluctuation-dissipation theorem, unlike the conventional fractional Langevin equation (FLE). The solution of this equation is Riemann-Liouville fractional Brownian motion (RL-FBM), also known in the literature as FBM II. Spurious nonergodicity, stationarity, and aging properties of the solution are explored for all admissible values α>1/2 of the order α of the time-fractional Caputo derivative in the FLEFE. The increments of the process are asymptotically stationary. However when 1/2<α<3/2, the time-averaged mean-squared displacement (TAMSD) does not converge to the mean-squared displacement (MSD). Instead, it converges to the mean-squared increment (MSI) or structure function, leading to the phenomenon of spurious nonergodicity. When α≥3/2, the increments of FLEFE motion are nonergodic, however the higher order increments are asymptotically ergodic. We also discuss the aging effect in the FLEFE by investigating the influence of an aging time t_{a} on the MSD, TAMSD and autocovariance function of the increments. We find that under strong aging conditions the process becomes ergodic, and the increments become stationary in the domain 1/2<α<3/2.
Collapse
Affiliation(s)
- Qing Wei
- Chinese Academy of Sciences, Academy of Mathematics and Systems Science, LSEC, ICMSEC, Beijing 100190, China
| | - Wei Wang
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
| | - Yifa Tang
- Chinese Academy of Sciences, Academy of Mathematics and Systems Science, LSEC, ICMSEC, Beijing 100190, China
- University of Chinese Academy of Sciences, School of Mathematical Sciences, Beijing 100049, China
| | - Ralf Metzler
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Aleksei Chechkin
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
- Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wyspianskiego 27, 50-370 Wrocław, Poland
- Max Planck Institute of Microstructure Physics, German-Ukrainian Core of Excellence, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
3
|
Srinivasan H, Sharma VK, Mitra S. Breaking the Brownian barrier: models and manifestations of molecular diffusion in complex fluids. Phys Chem Chem Phys 2024. [PMID: 39584788 DOI: 10.1039/d4cp01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Over a century ago, Einstein formulated a precise mathematical model for describing Brownian motion. While this model adequately explains the diffusion of micron-sized particles in fluids, its limitations become apparent when applied to molecular self-diffusion in fluids. The foundational principles of Gaussianity and Markovianity, central to the Brownian diffusion paradigm, are insufficient for describing molecular diffusion, particularly in complex fluids characterized by intricate intermolecular interactions and hindered relaxation processes. This perspective delves into the nuanced behavior observed in diverse complex fluids, including molecular self-assembly systems, deep eutectic solvents, and ionic liquids, with a specific focus on modeling self-diffusion within these media. We explore the possibility of extending diffusion models to incorporate non-Gaussian and non-Markovian effects by augmenting the Brownian model using non-local diffusion equations. Furthermore, we validate the applicability of these models by utilizing them to describe results from quasielastic neutron scattering and MD simulations.
Collapse
Affiliation(s)
- Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
4
|
Watts Moore O, Lewis C, Ross T, Waigh TA, Korabel N, Mendoza C. Extreme heterogeneity in the microrheology of lamellar surfactant gels analyzed with neural networks. Phys Rev E 2024; 110:014603. [PMID: 39161018 DOI: 10.1103/physreve.110.014603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 08/21/2024]
Abstract
The heterogeneity of the viscoelasticity of a lamellar gel network based on cetyl-trimethylammonium chloride and cetostearyl alcohol was studied using particle-tracking microrheology. A recurrent neural network (RNN) architecture was used for estimating the Hurst exponent, H, on small sections of tracks of probe spheres moving with fractional Brownian motion. Thus, dynamic segmentation of tracks via neural networks was used in microrheology and it is significantly more accurate than using mean square displacements (MSDs). An ensemble of 414 particles produces a MSD that is subdiffusive in time, t, with a power law of the form t^{0.74±0.02}, indicating power law viscoelasticity. RNN analysis of the probability distributions of H, combined with detailed analysis of the time-averaged MSDs of individual tracks, revealed diverse diffusion processes belied by the simple scaling of the ensemble MSD, such as caging phenomena, which give rise to the complex viscoelasticity of lamellar gels.
Collapse
|
5
|
Seckler H, Metzler R, Kelty-Stephen DG, Mangalam M. Multifractal spectral features enhance classification of anomalous diffusion. Phys Rev E 2024; 109:044133. [PMID: 38755826 DOI: 10.1103/physreve.109.044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
Anomalous diffusion processes, characterized by their nonstandard scaling of the mean-squared displacement, pose a unique challenge in classification and characterization. In a previous study [Mangalam et al., Phys. Rev. Res. 5, 023144 (2023)2643-156410.1103/PhysRevResearch.5.023144], we established a comprehensive framework for understanding anomalous diffusion using multifractal formalism. The present study delves into the potential of multifractal spectral features for effectively distinguishing anomalous diffusion trajectories from five widely used models: fractional Brownian motion, scaled Brownian motion, continuous-time random walk, annealed transient time motion, and Lévy walk. We generate extensive datasets comprising 10^{6} trajectories from these five anomalous diffusion models and extract multiple multifractal spectra from each trajectory to accomplish this. Our investigation entails a thorough analysis of neural network performance, encompassing features derived from varying numbers of spectra. We also explore the integration of multifractal spectra into traditional feature datasets, enabling us to assess their impact comprehensively. To ensure a statistically meaningful comparison, we categorize features into concept groups and train neural networks using features from each designated group. Notably, several feature groups demonstrate similar levels of accuracy, with the highest performance observed in groups utilizing moving-window characteristics and p varation features. Multifractal spectral features, particularly those derived from three spectra involving different timescales and cutoffs, closely follow, highlighting their robust discriminatory potential. Remarkably, a neural network exclusively trained on features from a single multifractal spectrum exhibits commendable performance, surpassing other feature groups. In summary, our findings underscore the diverse and potent efficacy of multifractal spectral features in enhancing the predictive capacity of machine learning to classify anomalous diffusion processes.
Collapse
Affiliation(s)
- Henrik Seckler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, New York 12561, USA
| | - Madhur Mangalam
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| |
Collapse
|
6
|
Yu S, Chu R, Wu G, Meng X. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution. Polymers (Basel) 2024; 16:524. [PMID: 38399901 PMCID: PMC10891538 DOI: 10.3390/polym16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In crowded fluids, polymer segments can exhibit anomalous subdiffusion due to the viscoelasticity of the surrounding environment. Previous single-particle tracking experiments revealed that such anomalous diffusion in complex fluids (e.g., in bacterial cytoplasm) can be described by fractional Brownian motion (fBm). To investigate how the viscoelastic media affects the diffusive behaviors of polymer segments without resolving single crowders, we developed a novel fractional Brownian dynamics method to simulate the dynamics of polymers under confinement. In this work, instead of using Gaussian random numbers ("white Gaussian noise") to model the Brownian force as in the standard Brownian dynamics simulations, we introduce fractional Gaussian noise (fGn) in our homemade fractional Brownian dynamics simulation code to investigate the anomalous diffusion of polymer segments by using a simple "bottle-brush"-type polymer model. The experimental results of the velocity autocorrelation function and the exponent that characterizes the subdiffusion of the confined polymer segments can be reproduced by this simple polymer model in combination with fractional Gaussian noise (fGn), which mimics the viscoelastic media.
Collapse
Affiliation(s)
- Shi Yu
- Department of Chemical Engineering, China University of Mining & Technology, Xuzhou 221116, China; (R.C.); (G.W.); (X.M.)
| | - Ruizhi Chu
- Department of Chemical Engineering, China University of Mining & Technology, Xuzhou 221116, China; (R.C.); (G.W.); (X.M.)
- Key Laboratory of Coal-Based CO2 Capture and Geological Storage, China University of Mining & Technology, Xuzhou 221116, China
| | - Guoguang Wu
- Department of Chemical Engineering, China University of Mining & Technology, Xuzhou 221116, China; (R.C.); (G.W.); (X.M.)
- Key Laboratory of Coal-Based CO2 Capture and Geological Storage, China University of Mining & Technology, Xuzhou 221116, China
| | - Xianliang Meng
- Department of Chemical Engineering, China University of Mining & Technology, Xuzhou 221116, China; (R.C.); (G.W.); (X.M.)
- Key Laboratory of Coal-Based CO2 Capture and Geological Storage, China University of Mining & Technology, Xuzhou 221116, China
| |
Collapse
|
7
|
Kompella VPS, Romano MC, Stansfield I, Mancera RL. What determines sub-diffusive behavior in crowded protein solutions? Biophys J 2024; 123:134-146. [PMID: 38073154 PMCID: PMC10808025 DOI: 10.1016/j.bpj.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023] Open
Abstract
The aqueous environment inside cells is densely packed. A typical cell has a macromolecular concentration in the range 90-450 g/L, with 5%-40% of its volume being occupied by macromolecules, resulting in what is known as macromolecular crowding. The space available for the free diffusion of metabolites and other macromolecules is thus greatly reduced, leading to so-called excluded volume effects. The slow diffusion of macromolecules under crowded conditions has been explained using transient complex formation. However, sub-diffusion noted in earlier works is not well characterized, particularly the role played by transient complex formation and excluded volume effects. We have used Brownian dynamics simulations to characterize the diffusion of chymotrypsin inhibitor 2 in protein solutions of bovine serum albumin and lysozyme at concentrations ranging from 50 to 300 g/L. The predicted changes in diffusion coefficient as a function of crowder concentration are consistent with NMR experiments. The sub-diffusive behavior observed in the sub-microsecond timescale can be explained in terms of a so-called cage effect, arising from rattling motion in a local molecular cage as a consequence of excluded volume effects. By selectively manipulating the nature of interactions between protein molecules, we determined that excluded volume effects induce sub-diffusive dynamics at sub-microsecond timescales. These findings may help to explain the diffusion-mediated effects of protein crowding on cellular processes.
Collapse
Affiliation(s)
- Vijay Phanindra Srikanth Kompella
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Data Science, Curtin University, Perth, Western Australia, Australia; Department of Physics, Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Maria Carmen Romano
- Department of Physics, Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom; Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ian Stansfield
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Data Science, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
8
|
Hartmann AK, Meerson B. First-passage area distribution and optimal fluctuations of fractional Brownian motion. Phys Rev E 2024; 109:014146. [PMID: 38366541 DOI: 10.1103/physreve.109.014146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
We study the probability distribution P(A) of the area A=∫_{0}^{T}x(t)dt swept under fractional Brownian motion (fBm) x(t) until its first passage time T to the origin. The process starts at t=0 from a specified point x=L. We show that P(A) obeys exact scaling relation P(A)=D^{1/2H}/L^{1+1/H}Φ_{H}(D^{1/2H}A/L^{1+1/H}), where 0
Collapse
Affiliation(s)
| | - Baruch Meerson
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Krishna Kumar K, Caspers J, Ginot F, Krüger M, Bechinger C. Memory-induced alignment of colloidal dumbbells. Sci Rep 2023; 13:17409. [PMID: 37833487 PMCID: PMC10575873 DOI: 10.1038/s41598-023-44547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
When a colloidal probe is forced through a viscoelastic fluid which is characterized by a long stress-relaxation time, the fluid is excited out of equilibrium. This is leading to a number of interesting effects including a non-trivial recoil of the probe when the driving force is removed. Here, we experimentally and theoretically investigate the transient recoil dynamics of non-spherical particles, i.e., colloidal dumbbells. In addition to a translational recoil of the dumbbells, we also find a pronounced angular reorientation which results from the relaxation of the surrounding fluid. Our findings are in good agreement with a Langevin description based on the symmetries of a director (dumbbell) as well as a microscopic bath-rod model. Remarkably, we find an instability with amplified fluctuations when the dumbbell is oriented perpendicular to the direction of driving. Our results demonstrate the complex behavior of non-spherical objects within a relaxing environment which are of immediate interest for the motion of externally but also self-driven asymmetric objects in viscoelastic fluids.
Collapse
Affiliation(s)
| | - Juliana Caspers
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, Göttingen, 37073, Germany
| | - Félix Ginot
- Fachbereich Physik, Universität Konstanz, Konstanz, 78457, Germany
| | - Matthias Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, Göttingen, 37073, Germany
| | | |
Collapse
|
10
|
Régnier L, Dolgushev M, Bénichou O. Record ages of non-Markovian scale-invariant random walks. Nat Commun 2023; 14:6288. [PMID: 37813834 PMCID: PMC10562453 DOI: 10.1038/s41467-023-41945-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
How long is needed for an observable to exceed its previous highest value and establish a new record? This time, known as the age of a record plays a crucial role in quantifying record statistics. Until now, general methods for determining record age statistics have been limited to observations of either independent random variables or successive positions of a Markovian (memoryless) random walk. Here we develop a theoretical framework to determine record age statistics in the presence of memory effects for continuous non-smooth processes that are asymptotically scale-invariant. Our theoretical predictions are confirmed by numerical simulations and experimental realisations of diverse representative non-Markovian random walk models and real time series with memory effects, in fields as diverse as genomics, climatology, hydrology, geology and computer science. Our results reveal the crucial role of the number of records already achieved in time series and change our view on analysing record statistics.
Collapse
Affiliation(s)
- Léo Régnier
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Maxim Dolgushev
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
11
|
Liang Y, Wang W, Metzler R. Anomalous diffusion, non-Gaussianity, and nonergodicity for subordinated fractional Brownian motion with a drift. Phys Rev E 2023; 108:024143. [PMID: 37723819 DOI: 10.1103/physreve.108.024143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
Abstract
The stochastic motion of a particle with long-range correlated increments (the moving phase) which is intermittently interrupted by immobilizations (the trapping phase) in a disordered medium is considered in the presence of an external drift. In particular, we consider trapping events whose times follow a scale-free distribution with diverging mean trapping time. We construct this process in terms of fractional Brownian motion with constant forcing in which the trapping effect is introduced by the subordination technique, connecting "operational time" with observable "real time." We derive the statistical properties of this process such as non-Gaussianity and nonergodicity, for both ensemble and single-trajectory (time) averages. We demonstrate nice agreement with extensive simulations for the probability density function, skewness, kurtosis, as well as ensemble and time-averaged mean-squared displacements. We place a specific emphasis on the comparisons between the cases with and without drift.
Collapse
Affiliation(s)
- Yingjie Liang
- College of Mechanics and Materials, Hohai University, 211100 Nanjing, China
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
| | - Wei Wang
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
12
|
Wei Q, Wang W, Zhou H, Metzler R, Chechkin A. Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations. Phys Rev E 2023; 108:024125. [PMID: 37723675 DOI: 10.1103/physreve.108.024125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/21/2023] [Indexed: 09/20/2023]
Abstract
Fractional diffusion and Fokker-Planck equations are widely used tools to describe anomalous diffusion in a large variety of complex systems. The equivalent formulations in terms of Caputo or Riemann-Liouville fractional derivatives can be derived as continuum limits of continuous-time random walks and are associated with the Mittag-Leffler relaxation of Fourier modes, interpolating between a short-time stretched exponential and a long-time inverse power-law scaling. More recently, a number of other integrodifferential operators have been proposed, including the Caputo-Fabrizio and Atangana-Baleanu forms. Moreover, the conformable derivative has been introduced. We study here the dynamics of the associated generalized Fokker-Planck equations from the perspective of the moments, the time-averaged mean-squared displacements, and the autocovariance functions. We also study generalized Langevin equations based on these generalized operators. The differences between the Fokker-Planck and Langevin equations with different integrodifferential operators are discussed and compared with the dynamic behavior of established models of scaled Brownian motion and fractional Brownian motion. We demonstrate that the integrodifferential operators with exponential and Mittag-Leffler kernels are not suitable to be introduced to Fokker-Planck and Langevin equations for the physically relevant diffusion scenarios discussed in our paper. The conformable and Caputo Langevin equations are unveiled to share similar properties with scaled and fractional Brownian motion, respectively.
Collapse
Affiliation(s)
- Qing Wei
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
| | - Wei Wang
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
| | - Hongwei Zhou
- School of Energy and Mining Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Ralf Metzler
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Aleksei Chechkin
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
- Akhiezer Institute for Theoretical Physics National Science Center, Kharkiv Institute of Physics and Technology, Akademichna 1, Kharkiv 61108, Ukraine
| |
Collapse
|
13
|
Saito T. Langevin analogy between particle trajectories and polymer configurations. Phys Rev E 2023; 107:034502. [PMID: 37072961 DOI: 10.1103/physreve.107.034502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/02/2023] [Indexed: 04/20/2023]
Abstract
A diffusive trajectory drawn by the generalized Langevin equation (GLE) for a colloidal particle evokes a random fractal of a static polymer configuration. This article proposes a static GLE-like description that enables the generation of a single configuration of a polymer chain with the noise formulated to satisfy the static fluctuation-response relation (FRR) along a one-dimensional chain structure but not along a temporal coordinate. A remarkable point is qualitative differences and similarities in the FRR formulation between the static and the dynamic GLEs. Guided by the static FRR, we further make analogous arguments in light of stochastic energetics and the steady-state fluctuation theorem.
Collapse
Affiliation(s)
- Takuya Saito
- Department of Physical Sciences, Aoyama Gakuin University, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
14
|
Scott S, Weiss M, Selhuber-Unkel C, Barooji YF, Sabri A, Erler JT, Metzler R, Oddershede LB. Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking. Phys Chem Chem Phys 2023; 25:1513-1537. [PMID: 36546878 DOI: 10.1039/d2cp01384c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.
Collapse
Affiliation(s)
- Shane Scott
- Institute of Physiology, Kiel University, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering, Heidelberg University, D-69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Younes F Barooji
- Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
| | - Adal Sabri
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Janine T Erler
- BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, D-14476 Potsdam, Germany.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | | |
Collapse
|
15
|
Meerson B, Bénichou O, Oshanin G. Path integrals for fractional Brownian motion and fractional Gaussian noise. Phys Rev E 2022; 106:L062102. [PMID: 36671110 DOI: 10.1103/physreve.106.l062102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Wiener's path integral plays a central role in the study of Brownian motion. Here we derive exact path-integral representations for the more general fractional Brownian motion (FBM) and for its time derivative process, fractional Gaussian noise (FGN). These paradigmatic non-Markovian stochastic processes, introduced by Kolmogorov, Mandelbrot, and van Ness, found numerous applications across the disciplines, ranging from anomalous diffusion in cellular environments to mathematical finance. Their exact path-integral representations were previously unknown. Our formalism exploits the Gaussianity of the FBM and FGN, relies on the theory of singular integral equations, and overcomes some technical difficulties by representing the action functional for the FBM in terms of the FGN for the subdiffusive FBM and in terms of the derivative of the FGN for the super-diffusive FBM. We also extend the formalism to include external forcing. The exact and explicit path-integral representations make inroads in the study of the FBM and FGN.
Collapse
Affiliation(s)
- Baruch Meerson
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, UMR CNRS 7600, CNRS, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Gleb Oshanin
- Laboratoire de Physique Théorique de la Matière Condensée, UMR CNRS 7600, CNRS, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France.,Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
16
|
Runfola C, Vitali S, Pagnini G. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221141. [PMID: 36340511 PMCID: PMC9627453 DOI: 10.1098/rsos.221141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
By collecting from literature data experimental evidence of anomalous diffusion of passive tracers inside cytoplasm, and in particular of subdiffusion of mRNA molecules inside live Escherichia coli cells, we obtain the probability density function of molecules' displacement and we derive the corresponding Fokker-Planck equation. Molecules' distribution emerges to be related to the Krätzel function and its Fokker-Planck equation to be a fractional diffusion equation in the Erdélyi-Kober sense. The irreducibility of the derived Fokker-Planck equation to those of other literature models is also discussed.
Collapse
Affiliation(s)
- C. Runfola
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna, Italy
- BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
| | - S. Vitali
- BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
- Eurecat, Centre Tecnológic de Catalunya, Unit of Digital Health, Data Analytics in Medicine, E-08005 Barcelona, Catalunya, Spain
| | - G. Pagnini
- BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
- Ikerbasque – Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Basque Country, Spain
| |
Collapse
|
17
|
Everlasting impact of initial perturbations on first-passage times of non-Markovian random walks. Nat Commun 2022; 13:5319. [PMID: 36085151 PMCID: PMC9463153 DOI: 10.1038/s41467-022-32280-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Persistence, defined as the probability that a signal has not reached a threshold up to a given observation time, plays a crucial role in the theory of random processes. Often, persistence decays algebraically with time with non trivial exponents. However, general analytical methods to calculate persistence exponents cannot be applied to the ubiquitous case of non-Markovian systems relaxing transiently after an imposed initial perturbation. Here, we introduce a theoretical framework that enables the non-perturbative determination of persistence exponents of Gaussian non-Markovian processes with non stationary dynamics relaxing to a steady state after an initial perturbation. Two situations are analyzed: either the system is subjected to a temperature quench at initial time, or its past trajectory is assumed to have been observed and thus known. Our theory covers the case of spatial dimension higher than one, opening the way to characterize non-trivial reaction kinetics for complex systems with non-equilibrium initial conditions.
Collapse
|
18
|
Ling Y, Lysy M, Seim I, Newby J, Hill DB, Cribb J, Forest MG. Measurement error correction in particle tracking microrheology. Ann Appl Stat 2022. [DOI: 10.1214/21-aoas1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yun Ling
- Department of Statistics and Actuarial Science, University of Waterloo
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo
| | - Ian Seim
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill
| | - Jay Newby
- Department of Mathematical and Statistical Sciences, University of Alberta
| | - David B. Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill
| | - Jeremy Cribb
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill
| | - M. Gregory Forest
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill
| |
Collapse
|
19
|
Meerson B, Oshanin G. Geometrical optics of large deviations of fractional Brownian motion. Phys Rev E 2022; 105:064137. [PMID: 35854589 DOI: 10.1103/physreve.105.064137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
It has been shown recently that the optimal fluctuation method-essentially geometrical optics-provides a valuable insight into large deviations of Brownian motion. Here we extend the geometrical optics formalism to two-sided, -∞<t<∞, fractional Brownian motion (fBm) on the line, which is "pushed" to a large deviation regime by imposed constraints. We test the formalism on three examples where exact solutions are available: the two- and three-point probability distributions of the fBm and the distribution of the area under the fBm on a specified time interval. Then we apply the formalism to several previously unsolved problems by evaluating large-deviation tails of the following distributions: (i) of the first-passage time, (ii) of the maximum of, and (iii) of the area under, fractional Brownian bridge and fractional Brownian excursion, and (iv) of the first-passage area distribution of the fBm. An intrinsic part of a geometrical optics calculation is determination of the optimal path-the most likely realization of the process which dominates the probability distribution of the conditioned process. Due to the non-Markovian nature of the fBm, the optimal paths of a fBm, subject to constraints on a finite interval 0<t≤T, involve both the past -∞<t<0 and the future T<t<∞.
Collapse
Affiliation(s)
- Baruch Meerson
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gleb Oshanin
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
20
|
Klett K, Cherstvy AG, Shin J, Sokolov IM, Metzler R. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions. Phys Rev E 2022; 104:064603. [PMID: 35030844 DOI: 10.1103/physreve.104.064603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022]
Abstract
We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction ϕ and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on ϕ, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing ϕ. We also analyze the relative motion in the dimers, finding that larger ϕ suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(ϕ) of translational and rotational motion of the dumbbells an exponential decay with ϕ for weak and a power-law variation D(ϕ)∝(ϕ-ϕ^{★})^{2.4} for strong crowding is found. A comparison of simulation results with theoretical predictions for D(ϕ) is discussed and some relevant experimental systems are overviewed.
Collapse
Affiliation(s)
- Kolja Klett
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
21
|
Wang W, Metzler R, Cherstvy AG. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models. Phys Chem Chem Phys 2022; 24:18482-18504. [DOI: 10.1039/d2cp01741e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How does a systematic time-dependence of the diffusion coefficient $D (t)$ affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we examine how the behavior of the...
Collapse
|
22
|
Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach. Biophys J 2021; 120:4722-4737. [PMID: 34592261 DOI: 10.1016/j.bpj.2021.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, we propose a generalized Langevin equation-based model to describe the lateral diffusion of a protein in a lipid bilayer. The memory kernel is represented in terms of a viscous (instantaneous) and an elastic (noninstantaneous) component modeled through a Dirac δ function and a three-parameter Mittag-Leffler type function, respectively. By imposing a specific relationship between the parameters of the three-parameter Mittag-Leffler function, the different dynamical regimes-namely ballistic, subdiffusive, and Brownian, as well as the crossover from one regime to another-are retrieved. Within this approach, the transition time from the ballistic to the subdiffusive regime and the spectrum of relaxation times underlying the transition from the subdiffusive to the Brownian regime are given. The reliability of the model is tested by comparing the mean-square displacement derived in the framework of this model and the mean-square displacement of a protein diffusing in a membrane calculated through molecular dynamics simulations.
Collapse
|
23
|
Zhao Y, Lu Y, Wang D. Tracking of Nanoparticle Diffusion at a Liquid-Liquid Interface Adsorbed by Nonionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12118-12127. [PMID: 34610245 DOI: 10.1021/acs.langmuir.1c01978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emulsions stabilized by both nanoparticles and surfactants often display longer shelf life than those stabilized by nanoparticles or surfactants alone. Although numerous works have been conducted to understand the effect of nanoparticles and surfactants on the variation of interfacial tension, little is known about interfacial diffusion when both nanoparticles and surfactants are present at interfaces. In this work, we used single-particle fluorescence tracking to study the lateral diffusion of individual hydrophobic nanoparticles at hexane-glycerol interfaces adsorbed by different amounts of nonionic surfactants. When the surfactant concentration is over a threshold, we found that the nanoparticle diffusion exhibits a two-regime behavior involving short-time Brownian and the emergence of subdiffusive, non-Gaussian, and dynamically anticorrelated diffusion in the long lag time regime. A stepwise analysis rationalized diffusion in different lag time regimes, leading to a mechanistic interpretation regarding the two-regime behavior. These results could provide insight into the understanding of the synergistic effect for the surfactant-assistant Pickering emulsion.
Collapse
Affiliation(s)
- Yuehua Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
24
|
Detecting Transient Trapping from a Single Trajectory: A Structural Approach. ENTROPY 2021; 23:e23081044. [PMID: 34441183 PMCID: PMC8394669 DOI: 10.3390/e23081044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022]
Abstract
In this article, we introduce a new method to detect transient trapping events within a single particle trajectory, thus allowing the explicit accounting of changes in the particle’s dynamics over time. Our method is based on new measures of a smoothed recurrence matrix. The newly introduced set of measures takes into account both the spatial and temporal structure of the trajectory. Therefore, it is adapted to study short-lived trapping domains that are not visited by multiple trajectories. Contrary to most existing methods, it does not rely on using a window, sliding along the trajectory, but rather investigates the trajectory as a whole. This method provides useful information to study intracellular and plasma membrane compartmentalisation. Additionally, this method is applied to single particle trajectory data of β2-adrenergic receptors, revealing that receptor stimulation results in increased trapping of receptors in defined domains, without changing the diffusion of free receptors.
Collapse
|
25
|
Janczura J, Kowalek P, Loch-Olszewska H, Szwabiński J, Weron A. Classification of particle trajectories in living cells: Machine learning versus statistical testing hypothesis for fractional anomalous diffusion. Phys Rev E 2021; 102:032402. [PMID: 33076015 DOI: 10.1103/physreve.102.032402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Single-particle tracking (SPT) has become a popular tool to study the intracellular transport of molecules in living cells. Inferring the character of their dynamics is important, because it determines the organization and functions of the cells. For this reason, one of the first steps in the analysis of SPT data is the identification of the diffusion type of the observed particles. The most popular method to identify the class of a trajectory is based on the mean-square displacement (MSD). However, due to its known limitations, several other approaches have been already proposed. With the recent advances in algorithms and the developments of modern hardware, the classification attempts rooted in machine learning (ML) are of particular interest. In this work, we adopt two ML ensemble algorithms, i.e., random forest and gradient boosting, to the problem of trajectory classification. We present a new set of features used to transform the raw trajectories data into input vectors required by the classifiers. The resulting models are then applied to real data for G protein-coupled receptors and G proteins. The classification results are compared to recent statistical methods going beyond MSD.
Collapse
Affiliation(s)
- Joanna Janczura
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Patrycja Kowalek
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Hanna Loch-Olszewska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Janusz Szwabiński
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Aleksander Weron
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| |
Collapse
|
26
|
Wohl I, Sherman E. Spectral Analysis of ATP-Dependent Mechanical Vibrations in T Cells. Front Cell Dev Biol 2021; 9:590655. [PMID: 34178972 PMCID: PMC8222795 DOI: 10.3389/fcell.2021.590655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical vibrations affect multiple cell properties, including its diffusivity, entropy, internal content organization, and thus-function. Here, we used Differential Interference Contrast (DIC), confocal, and Total Internal Reflection Fluorescence (TIRF) microscopies to study mechanical vibrations in live (Jurkat) T cells. Vibrations were measured via the motion of intracellular particles and plasma membrane. These vibrations depend on adenosine triphosphate (ATP) consumption and on Myosin II activity. We then used spectral analysis of these vibrations to distinguish the effects of thermal agitation, ATP-dependent mechanical work and cytoskeletal visco-elasticity. Parameters of spectral analyses could be related to mean square displacement (MSD) analyses with specific advantages in characterizing intracellular mechanical work. We identified two spectral ranges where mechanical work dominated vibrations of intracellular components: 0-3 Hz for intracellular particles and the plasma-membrane, and 100-150 Hz for the plasma-membrane. The 0-3 Hz vibrations of the cell membrane that we measured in an experimental model of immune synapse (IS) are expected to affect the IS formation and function in effector cells. It may also facilitate immunological escape of extensively vibrating malignant cells.
Collapse
Affiliation(s)
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
27
|
Mahato J, Bhattacharya S, Sharma DK, Chowdhury A. Polarization-resolved single-molecule tracking reveals strange dynamics of fluorescent tracers through a deep rubbery polymer network. Phys Chem Chem Phys 2021; 23:10835-10844. [PMID: 33908423 DOI: 10.1039/d0cp05864e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tracking the movement of fluorescent single-molecule (SM) tracers has provided several new insights into the local structure and dynamics in complex environments such as soft materials and biological systems. However, SM tracking (SMT) remains unreliable at molecular length scales, as the localization error (LE) of SM trajectories (∼30-50 nm) is considerably larger than the size of molecular tracers (∼1-2 nm). Thus, instances of tracer (im)mobility in heterogeneous media, which provide indicators for underlying anomalous-transport mechanisms, remain obscured within the realms of SMT. Since the translation of passive tracers in an isotropic media is associated with fast dipolar rotation, we propose that authentic pauses within the LE can be revealed by probing the hindrance of SM reorientational dynamics. Here, we demonstrate how polarization-resolved SMT (PR-SMT) can provide emission anisotropy at each super-localized position, thereby revealing the tumbling propensity of SMs during random walks. For rhodamine 6G tracers undergoing heterogeneous transport in a hydrated polyvinylpyrrolidone (PVP) network, analysis of PR-SMT trajectories enabled us to discern instances of genuine immobility and localized motion within the LE. Our investigations on 100 SMs in (plasticized) PVP films reveal a wide distribution of dwell times and pause frequencies, demonstrating that most probes intermittently experience complete translational and rotational immobilization. This indicates that tracers serendipitously encounter compact, rigid polymer cavities during transport, implying the existence of nanoscale glass-like domains sparsely distributed in a predominantly deep-rubbery polymer network far above the glass transition.
Collapse
Affiliation(s)
- Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sukanya Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Dharmendar K Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
28
|
Itto Y, Beck C. Superstatistical modelling of protein diffusion dynamics in bacteria. J R Soc Interface 2021; 18:20200927. [PMID: 33653112 PMCID: PMC8086855 DOI: 10.1098/rsif.2020.0927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/04/2021] [Indexed: 01/18/2023] Open
Abstract
A recent experiment (Sadoon AA, Wang Y. 2018 Phys. Rev. E98, 042411. (doi:10.1103/PhysRevE.98.042411)) has revealed that nucleoid-associated proteins (i.e. DNA-binding proteins) exhibit highly heterogeneous diffusion processes in bacteria where not only the diffusion constant but also the anomalous diffusion exponent fluctuates for the various proteins. The distribution of displacements of such proteins is observed to take a q-Gaussian form, which decays as a power law. Here, a statistical model is developed for the diffusive motion of the proteins within the bacterium, based on a superstatistics with two variables. This model hierarchically takes into account the joint fluctuations of both the anomalous diffusion exponents and the diffusion constants. A fractional Brownian motion is discussed as a possible local model. Good agreement with the experimental data is obtained.
Collapse
Affiliation(s)
- Yuichi Itto
- ICP, Universität Stuttgart, 70569 Stuttgart, Germany
- Science Division, Center for General Education, Aichi Institute of Technology, Aichi 470-0392, Japan
| | - Christian Beck
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
29
|
Szarek D, Sikora G, Balcerek M, Jabłoński I, Wyłomańska A. Fractional Dynamics Identification via Intelligent Unpacking of the Sample Autocovariance Function by Neural Networks. ENTROPY 2020; 22:e22111322. [PMID: 33287087 PMCID: PMC7712253 DOI: 10.3390/e22111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
Many single-particle tracking data related to the motion in crowded environments exhibit anomalous diffusion behavior. This phenomenon can be described by different theoretical models. In this paper, fractional Brownian motion (FBM) was examined as the exemplary Gaussian process with fractional dynamics. The autocovariance function (ACVF) is a function that determines completely the Gaussian process. In the case of experimental data with anomalous dynamics, the main problem is first to recognize the type of anomaly and then to reconstruct properly the physical rules governing such a phenomenon. The challenge is to identify the process from short trajectory inputs. Various approaches to address this problem can be found in the literature, e.g., theoretical properties of the sample ACVF for a given process. This method is effective; however, it does not utilize all of the information contained in the sample ACVF for a given trajectory, i.e., only values of statistics for selected lags are used for identification. An evolution of this approach is proposed in this paper, where the process is determined based on the knowledge extracted from the ACVF. The designed method is intuitive and it uses information directly available in a new fashion. Moreover, the knowledge retrieval from the sample ACVF vector is enhanced with a learning-based scheme operating on the most informative subset of available lags, which is proven to be an effective encoder of the properties inherited in complex data. Finally, the robustness of the proposed algorithm for FBM is demonstrated with the use of Monte Carlo simulations.
Collapse
Affiliation(s)
- Dawid Szarek
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (D.S.); (G.S.); (M.B.)
| | - Grzegorz Sikora
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (D.S.); (G.S.); (M.B.)
| | - Michał Balcerek
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (D.S.); (G.S.); (M.B.)
| | - Ireneusz Jabłoński
- Department of Electronics, Wroclaw University of Science and Technology, B. Prusa 53/55, 50-317 Wroclaw, Poland;
| | - Agnieszka Wyłomańska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (D.S.); (G.S.); (M.B.)
- Correspondence:
| |
Collapse
|
30
|
Du L, Zhao Z, Xu B, Gao W, Liu X, Chen Y, Wang Y, Liu J, Liu B, Sun S, Ma G, Gao J. Anisotropy of Anomalous Diffusion Improves the Accuracy of Differentiating and Grading Alzheimer's Disease Using Novel Fractional Motion Model. Front Aging Neurosci 2020; 12:602510. [PMID: 33328977 PMCID: PMC7710869 DOI: 10.3389/fnagi.2020.602510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Recent evidence shows that the fractional motion (FM) model may be a more appropriate model for describing the complex diffusion process of water in brain tissue and has shown to be beneficial in clinical applications of Alzheimer's disease (AD). However, the FM model averaged the anomalous diffusion parameter values, which omitted the impacts of anisotropy. This study aimed to investigate the potential feasibility of anisotropy of anomalous diffusion using the FM model for distinguishing and grading AD patients. Methods: Twenty-four patients with AD and 11 matched healthy controls were recruited, diffusion MRI was obtained from all participants and analyzed using the FM model. Generalized fractional anisotropy (gFA), an anisotropy metric, was introduced and the gFA values of FM-related parameters, Noah exponent (α) and the Hurst exponent (H), were calculated and compared between the healthy group and AD group and between the mild AD group and moderate AD group. The receiver-operating characteristic (ROC) analysis and the multivariate logistic regression analysis were used to assess the diagnostic performances of the anisotropy values and the directionally averaged values. Results: The gFA(α) and gFA(H) values of the moderate AD group were higher than those of the mild AD group in left hippocampus. The gFA(α) value of the moderate AD group was significantly higher than that of the healthy control group in both the left and right hippocampus. The gFA(ADC) values of the moderate AD group were significantly lower than those of the mild AD group and healthy control group in the right hippocampus. Compared with the gFA(α), gFA(H), α, and H, the ROC analysis showed larger areas under the curves for combination of α + gFA(α) and the combination of H + gFA(H) in differentiating the mild AD and moderate AD groups, and larger area under the curves for combination of α + gFA(α) in differentiating the healthy controls and AD groups. Conclusion: The anisotropy of anomalous diffusion could significantly differentiate and grade patients with AD, and the diagnostic performance was improved when the anisotropy metric was combined with commonly used directionally averaged values. The utility of anisotropic anomalous diffusion may provide novel insights to profoundly understand the neuropathology of AD.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zifang Zhao
- Department of Anesthesiology, Peking University First Hospital, Peking University, Beijing, China
| | - Boyan Xu
- Beijing Intelligent Brain Cloud Inc., Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Liu
- Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
31
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
32
|
Du L, Xu B, Zhao Z, Han X, Gao W, Shi S, Liu X, Chen Y, Wang Y, Sun S, Zhang L, Gao J, Ma G. Identification and Classification of Alzheimer's Disease Patients Using Novel Fractional Motion Model. Front Neurosci 2020; 14:767. [PMID: 33071719 PMCID: PMC7533574 DOI: 10.3389/fnins.2020.00767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 01/06/2023] Open
Abstract
Most diffusion magnetic resonance imaging (dMRI) techniques use the mono-exponential model to describe the diffusion process of water in the brain. However, the observed dMRI signal decay curve deviates from the mono-exponential form. To solve this problem, the fractional motion (FM) model has been developed, which is regarded as a more appropriate model for describing the complex diffusion process in brain tissue. It is still unclear in the identification and classification of Alzheimer's disease (AD) patients using the FM model. The purpose of this study was to investigate the potential feasibility of FM model for differentiating AD patients from healthy controls and grading patients with AD. Twenty-four patients with AD and 11 healthy controls were included. The left and right hippocampus were selected as regions of interest (ROIs). The apparent diffusion coefficient (ADC) values and FM-related parameters, including the Noah exponent (α), the Hurst exponent (H), and the memory parameter (μ=H-1/α), were calculated and compared between AD patients and healthy controls and between mild AD and moderate AD patients using a two-sample t-test. The correlations between FM-related parameters α, H, μ, and ADC values and the cognitive functions assessed by mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) scales were investigated using Pearson partial correlation analysis in patients with AD. The receiver-operating characteristic analysis was used to assess the differential performance. We found that the FM-related parameter α could be used to distinguish AD patients from healthy controls (P < 0.05) with greater sensitivity and specificity (left ROI, 0.917 and 0.636; right ROI, 0.917 and 0.727) and grade AD patients (P < 0.05) showed higher sensitivity and specificity (right ROI, 0.917, 0.75). The α was found to be positively correlated with MMSE (P < 0.05) and MoCA (P < 0.05) scores in patients with AD, indicating that the α values in the bilateral hippocampus were a potential MRI-based biomarker of disease severity in AD patients. This novel diffusion model may be useful for further understanding neuropathologic changes in patients with AD.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boyan Xu
- Beijing Intelligent Brain Cloud Inc., Beijing, China
| | - Zifang Zhao
- Department of Anesthesiology, Peking University First Hospital, Peking University, Beijing, China
| | - Xiaowei Han
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Sumin Shi
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhang
- Department of Science and Education, Shangluo Central Hospital, Shangluo, China
| | - Jiahong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Shan Y, Xu BY, Li S, Fan Y, Liu YB, Zhang M, Ma QF, Gao JH, Lu J. Assessment of MRI-based anomalous diffusion changes in brain ischemic stroke with a fractional motion model. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 317:106795. [PMID: 32712547 DOI: 10.1016/j.jmr.2020.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The actual diffusion process in human brain has been shown to be anomalous comparing to that predicted with traditional diffusion MRI (dMRI) theory. Recently, dMRI based on fractional motion (FM) model has demonstrated the potential to accurately describe anomalous diffusion in vivo. In this work, we explored the potential value of FM model-based dMRI in quantificational identification of ischemic stroke and compared that with the traditional apparent diffusion coefficient (ADC). We included 23 acute stroke patients, 8 of whom finished a follow-up scan, and 22 matched healthy controls. The dMRI images were acquired by using a Stejskal-Tanner single-shot spin-echo echo-planar-imaging sequence (diffusion gradients were applied in three orthogonal directions with 25 non-zero b values ranging from 248 to 4474 s/mm2) at 3.0 T MRI. We calculated the coefficient of variation (CV) for FM-related parameters in stroke lesions, and compared the mean values for FM-related parameters and ADC by using two-sample t-tests. Correlation analysis was achieved using Pearson correlation coefficient test. In acute stroke lesions, CV for FM-related parameters showed significant increase compared with normal tissues (P < 0.01), while those of ADC didn't appear statistical difference. Mean values for FM-related parameters showed significant decrease in acute lesion (P < 0.01) and their changing pattern during follow-up was positively correlated with ADC (P < 0.005). Our results initially verified the utility of the FM-model in detecting ischemic stroke compared with traditional dMRI.
Collapse
Affiliation(s)
- Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Bo-Yan Xu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Shuang Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yang Fan
- Beijing Intelligent Brain Cloud, Inc., Integrated Science Building, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Yi-Bing Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Miao Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qing-Feng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China; McGovern Institute for Brain Research, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China; Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
34
|
Saxton MJ. Diffusion of DNA-Binding Species in the Nucleus: A Transient Anomalous Subdiffusion Model. Biophys J 2020; 118:2151-2167. [PMID: 32294478 PMCID: PMC7203007 DOI: 10.1016/j.bpj.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Single-particle tracking experiments have measured escape times of DNA-binding species diffusing in living cells: CRISPR-Cas9, TetR, and LacI. The observed distribution is a truncated power law. Working backward from the experimental results, the observed distribution appears inconsistent with a Gaussian distribution of binding energies. Working forward, the observed distribution leads to transient anomalous subdiffusion, in which diffusion is anomalous at short times and normal at long times, here only mildly anomalous. Monte Carlo simulations are used to characterize the time-dependent diffusion coefficient D(t) in terms of the anomalous exponent α, the crossover time tcross, and the limits D(0) and D(∞) and to relate these quantities to the escape time distribution. The simplest interpretations identify the escape time as the actual binding time to DNA or the period of one-dimensional diffusion on DNA in the standard model combining one-dimensional and three-dimensional search, but a more complicated interpretation may be required. The model has several implications for cell biophysics. 1) The initial anomalous regime represents the search of the DNA-binding species for its target DNA sequence. 2) Non-target DNA sites have a significant effect on search kinetics. False positives in bioinformatic searches of the genome are potentially rate-determining in vivo. For simple binding, the search would be speeded if false-positive sequences were eliminated from the genome. 3) Both binding and obstruction affect diffusion. Obstruction ought to be measured directly, using as the primary probe the DNA-binding species with the binding site inactivated and eGFP as a calibration standard among laboratories and cell types. 4) Overexpression of the DNA-binding species reduces anomalous subdiffusion because the deepest binding sites are occupied and unavailable. 5) The model provides a coarse-grained phenomenological description of diffusion of a DNA-binding species, useful in larger-scale modeling of kinetics, FCS, and FRAP.
Collapse
Affiliation(s)
- Michael J Saxton
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California.
| |
Collapse
|
35
|
Díez Fernández A, Charchar P, Cherstvy AG, Metzler R, Finnis MW. The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated. Phys Chem Chem Phys 2020; 22:27955-27965. [DOI: 10.1039/d0cp03849k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The motion of the confined doxorubicin drug molecule exhibits an interesting combination of anomalous diffusion features.
Collapse
Affiliation(s)
- Amanda Díez Fernández
- Department of Physics and Department of Materials
- Imperial College London
- London SW7 2AZ
- UK
| | | | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Michael W. Finnis
- Department of Physics and Department of Materials
- Imperial College London
- London SW7 2AZ
- UK
| |
Collapse
|
36
|
Maelfeyt B, Tabei SMA, Gopinathan A. Anomalous intracellular transport phases depend on cytoskeletal network features. Phys Rev E 2019; 99:062404. [PMID: 31330659 DOI: 10.1103/physreve.99.062404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 01/06/2023]
Abstract
Intracellular transport in eukaryotic cells consists of phases of passive, diffusion-based transport and active, motor-driven transport along filaments that make up the cell's cytoskeleton. The interplay between superdiffusive transport along cytoskeletal filaments and the anomalous nature of subdiffusion in the bulk can lead to novel effects in transport behavior at the cellular scale. Here we develop a computational model of the process with cargo being ballistically transported along explicitly modeled cytoskeletal filament networks and passively transported in the cytoplasm by a subdiffusive continuous-time random walk (CTRW). We show that, over a physiologically relevant range of filament lengths and numbers, the network introduces a filament-length sensitive superdiffusive phase at early times which crosses over to a phase where the CTRW is dominant and produces subdiffusion at late times. We apply our approach to the problem of insulin secretion from cells and show that the superdiffusive phase introduced by the filament network manifests as a peak in the secretion at early times followed by an extended sustained release phase that is dominated by the CTRW process at late times. Our results are consistent with in vivo observations of insulin transport in healthy cells and shed light on the potential for the cell to tune functionally important transport phases by altering its cytoskeletal network.
Collapse
Affiliation(s)
- Bryan Maelfeyt
- Department of Physics, University of California Merced, Merced California, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls Iowa, USA
| | - Ajay Gopinathan
- Department of Physics, University of California Merced, Merced California, USA
| |
Collapse
|
37
|
Dunsing V, Irmscher T, Barbirz S, Chiantia S. Purely Polysaccharide-Based Biofilm Matrix Provides Size-Selective Diffusion Barriers for Nanoparticles and Bacteriophages. Biomacromolecules 2019; 20:3842-3854. [DOI: 10.1021/acs.biomac.9b00938] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Korabel N, Waigh TA, Fedotov S, Allan VJ. Non-Markovian intracellular transport with sub-diffusion and run-length dependent detachment rate. PLoS One 2018; 13:e0207436. [PMID: 30475848 PMCID: PMC6261056 DOI: 10.1371/journal.pone.0207436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
Intracellular transport of organelles is fundamental to cell function and health. The mounting evidence suggests that this transport is in fact anomalous. However, the reasons for the anomaly is still under debate. We examined experimental trajectories of organelles inside a living cell and propose a mathematical model that describes the previously reported transition from sub-diffusive to super-diffusive motion. In order to explain super-diffusive behaviour at long times, we introduce non-Markovian detachment kinetics of the cargo: the rate of detachment is inversely proportional to the time since the last attachment. Recently, we observed the non-Markovian detachment rate experimentally in eukaryotic cells. Here we further discuss different scenarios of how this effective non-Markovian detachment rate could arise. The non-Markovian model is successful in simultaneously describing the time averaged variance (the time averaged mean squared displacement corrected for directed motion), the mean first passage time of trajectories and the multiple peaks observed in the distributions of cargo velocities. We argue that non-Markovian kinetics could be biologically beneficial compared to the Markovian kinetics commonly used for modelling, by increasing the average distance the cargoes travel when a microtubule is blocked by other filaments. In turn, sub-diffusion allows cargoes to reach neighbouring filaments with higher probability, which promotes active motion along the microtubules.
Collapse
Affiliation(s)
- Nickolay Korabel
- School of Mathematics, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - Thomas A. Waigh
- Biological Physics, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- The Photon Science Institute, University of Manchester, Manchester, United Kingdom
| | - Sergei Fedotov
- School of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Viki J. Allan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
39
|
Goychuk I. Perfect anomalous transport of subdiffusive cargos by molecular motors in viscoelastic cytosol. Biosystems 2018; 177:56-65. [PMID: 30419266 DOI: 10.1016/j.biosystems.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022]
Abstract
Multiple experiments show that various submicron particles such as magnetosomes, RNA messengers, viruses, and even much smaller nanoparticles such as globular proteins diffuse anomalously slow in viscoelastic cytosol of living cells. Hence, their sufficiently fast directional transport by molecular motors such as kinesins is crucial for the cell operation. It has been shown recently that the traditional flashing Brownian ratchet models of molecular motors are capable to describe both normal and anomalous transport of such subdiffusing cargos by molecular motors with a very high efficiency. This work elucidates further an important role of mechanochemical coupling in such an anomalous transport. It shows a natural emergence of a perfect subdiffusive ratchet regime due to allosteric effects, where the random rotations of a "catalytic wheel" at the heart of the motor operation become perfectly synchronized with the random stepping of a heavily loaded motor, so that only one ATP molecule is consumed on average at each motor step along microtubule. However, the number of rotations made by the catalytic engine and the traveling distance both scale sublinearly in time. Nevertheless, this anomalous transport can be very fast in absolute terms.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
40
|
Speckner K, Stadler L, Weiss M. Anomalous dynamics of the endoplasmic reticulum network. Phys Rev E 2018; 98:012406. [PMID: 30110830 DOI: 10.1103/physreve.98.012406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 01/22/2023]
Abstract
Large portions of the endoplasmic reticulum (ER) in eukaryotic cells are organized as dynamic networks whose segments are connected by three-way junctions. Here we show that ER junctions move subdiffusively with signatures of fractional Brownian motion and a strong dependence on the cytoskeleton's integrity: The time-averaged mean square displacement scales as 〈r^{2}(τ)〉_{t}∼τ^{α} with α≈0.5 in untreated cells and α≈0.3 when disrupting microtubules, with successive steps being anticorrelated in both cases. We explain our observations by considering ER junctions to move like monomers in (semi)flexible polymer segments immersed in a viscoelastic environment. We also report that ER networks have a nontrivial fractal dimension d_{f}≈1.6 on mesoscopic scales and we provide evidence that the organelle's dynamics is governed by fractons.
Collapse
Affiliation(s)
- Konstantin Speckner
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Lorenz Stadler
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
41
|
Karaman MM, Zhou XJ. A fractional motion diffusion model for a twice-refocused spin-echo pulse sequence. NMR IN BIOMEDICINE 2018; 31:e3960. [PMID: 30133769 DOI: 10.1002/nbm.3960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to develop an analytical expression for a fractional motion (FM) diffusion model to characterize diffusion-induced signal attenuation in a twice-refocused spin-echo (TRSE) sequence that is resilient to eddy currents, and to demonstrate its applicability to human brain imaging in vivo. Based on the FM theory, which provides a unified statistical description for Langevin motions, the diffusion-weighted (DW) MR signal was measured with a TRSE sequence that balances the concomitant gradients. The analytical expression was fitted to a set of DW images acquired with 14 b-values (0-4000 s/mm2 ) from a total of 10 healthy human subjects at 3 T, yielding three FM parameter maps based on anomalous diffusion coefficient Dφ, ψ , diffusion increment variance φ, and diffusion correlation ψ, respectively. These parameters were used to characterize different brain regions in gray matter (GM), white matter (WM), and cerebrospinal fluid. The analytical expression for the TRSE-based FM model accurately described diffusion signal attenuation in healthy brain tissues at high b-values. TRSE's robustness against eddy currents was illustrated by comparing results from an expression for a conventional Stejskal-Tanner sequence. The TRSE-based FM model also produced consistent GM-WM contrast (p < 0.01) across all brain regions studied, whereas the consistency was not observed with the Stejskal-Tanner-based FM model. This new analytical expression is expected to enable further investigations to probe tissue structures by exploiting anomalous diffusion properties without being hindered by eddy-current perturbations at high b-values.
Collapse
Affiliation(s)
- M Muge Karaman
- Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
42
|
Lu X, Zheng K, Yang J, Zhao J. Probing the interplay between chain diffusion and polymer crystal growth under nanoscale confinement: a study by single molecule fluorescence microscopy. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Goychuk I. Viscoelastic subdiffusion in a random Gaussian environment. Phys Chem Chem Phys 2018; 20:24140-24155. [PMID: 30206605 DOI: 10.1039/c8cp05238g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viscoelastic subdiffusion governed by a fractional Langevin equation is studied numerically in a random Gaussian environment modeled by stationary Gaussian potentials with decaying spatial correlations. This anomalous diffusion is archetypal for living cells, where cytoplasm is known to be viscoelastic and a spatial disorder also naturally emerges. We obtain some first important insights into it within a model one-dimensional study. Two basic types of potential correlations are studied: short-range exponentially decaying and algebraically slow decaying with an infinite correlation length, both for a moderate (several kBT, in the units of thermal energy), and strong (5-10kBT) disorder. For a moderate disorder, it is shown that on the ensemble level viscoelastic subdiffusion can easily overcome the medium's disorder. Asymptotically, it is not distinguishable from the disorder-free subdiffusion. However, a strong scatter in single-trajectory averages is nevertheless seen even for a moderate disorder. It features a weak ergodicity breaking, which occurs on a very long yet transient time scale. Furthermore, for a strong disorder, a very long transient regime of logarithmic, Sinai-type diffusion emerges. It can last longer and be faster in the absolute terms for weakly decaying correlations as compared with the short-range correlations. Residence time distributions in a finite spatial domain are of a generalized log-normal type and are reminiscent also of a stretched exponential distribution. They can be easily confused for power-law distributions in view of the observed weak ergodicity breaking. This suggests a revision of some experimental data and their interpretation.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
44
|
Mardoukhi Y, Jeon JH, Chechkin AV, Metzler R. Fluctuations of random walks in critical random environments. Phys Chem Chem Phys 2018; 20:20427-20438. [PMID: 30043029 DOI: 10.1039/c8cp03212b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Percolation networks have been widely used in the description of porous media but are now found to be relevant to understand the motion of particles in cellular membranes or the nucleus of biological cells. Random walks on the infinite cluster at criticality of a percolation network are asymptotically ergodic. On any finite size cluster of the network stationarity is reached at finite times, depending on the cluster's size. Despite of this we here demonstrate by combination of analytical calculations and simulations that at criticality the disorder and cluster size average of the ensemble of clusters leads to a non-vanishing variance of the time averaged mean squared displacement, regardless of the measurement time. Fluctuations of this relevant experimental quantity due to the disorder average of such ensembles are thus persistent and non-negligible. The relevance of our results for single particle tracking analysis in complex and biological systems is discussed.
Collapse
Affiliation(s)
- Yousof Mardoukhi
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
45
|
Abstract
Kinesin is a molecular motor that transports cargo along microtubules. The results of many in vitro experiments on kinesin-1 are described by kinetic models in which one transition corresponds to the forward motion and subsequent binding of the tethered motor head. We argue that in a viscoelastic medium like the cytosol of a cell this step is not Markov and has to be described by a nonexponential waiting time distribution. We introduce a semi-Markov kinetic model for kinesin that takes this effect into account. We calculate, for arbitrary waiting time distributions, the moment generating function of the number of steps made, and determine from this the average velocity and the diffusion constant of the motor. We illustrate our results for the case of a waiting time distribution that is Weibull. We find that for realistic parameter values, viscoelasticity decreases the velocity and the diffusion constant, but increases the randomness (or Fano factor).
Collapse
Affiliation(s)
- Gert Knoops
- Faculty of Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Carlo Vanderzande
- Faculty of Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Instituut Theoretische Fysica, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| |
Collapse
|
46
|
Goychuk I. Sensing Magnetic Fields with Magnetosensitive Ion Channels. SENSORS (BASEL, SWITZERLAND) 2018; 18:E728. [PMID: 29495645 PMCID: PMC5877195 DOI: 10.3390/s18030728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
[-15]Magnetic nanoparticles are met across many biological species ranging from magnetosensitive bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy of such naturally occurring single-domain magnetic nanoparticles can reach up to 10-20 room k B T in the magnetic field of the Earth, which naturally led to supposition that they can serve as sensory elements in various animals. This work explores within a stochastic modeling framework a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living cells and typical sizes of nanoparticles possibly involved.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
47
|
Lanoiselée Y, Grebenkov DS. Unraveling intermittent features in single-particle trajectories by a local convex hull method. Phys Rev E 2017; 96:022144. [PMID: 28950648 DOI: 10.1103/physreve.96.022144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 01/01/2023]
Abstract
We propose a model-free method to detect change points between distinct phases in a single random trajectory of an intermittent stochastic process. The local convex hull (LCH) is constructed for each trajectory point, while its geometric properties (e.g., the diameter or the volume) are used as discriminators between phases. The efficiency of the LCH method is validated for six models of intermittent motion, including Brownian motion with different diffusivities or drifts, fractional Brownian motion with different Hurst exponents, and surface-mediated diffusion. We discuss potential applications of the method for detection of active and passive phases in the intracellular transport, temporal trapping or binding of diffusing molecules, alternating bulk and surface diffusion, run and tumble (or search) phases in the motion of bacteria and foraging animals, and instantaneous firing rates in neurons.
Collapse
Affiliation(s)
- Yann Lanoiselée
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France and Interdisciplinary Scientific Center Poncelet (ISCP), Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russia
| |
Collapse
|
48
|
Sikora G, Teuerle M, Wyłomańska A, Grebenkov D. Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement. Phys Rev E 2017; 96:022132. [PMID: 28950534 DOI: 10.1103/physreve.96.022132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 06/07/2023]
Abstract
The most common way of estimating the anomalous scaling exponent from single-particle trajectories consists of a linear fit of the dependence of the time-averaged mean-square displacement on the lag time at the log-log scale. We investigate the statistical properties of this estimator in the case of fractional Brownian motion (FBM). We determine the mean value, the variance, and the distribution of the estimator. Our theoretical results are confirmed by Monte Carlo simulations. In the limit of long trajectories, the estimator is shown to be asymptotically unbiased, consistent, and with vanishing variance. These properties ensure an accurate estimation of the scaling exponent even from a single (long enough) trajectory. As a consequence, we prove that the usual way to estimate the diffusion exponent of FBM is correct from the statistical point of view. Moreover, the knowledge of the estimator distribution is the first step toward new statistical tests of FBM and toward a more reliable interpretation of the experimental histograms of scaling exponents in microbiology.
Collapse
Affiliation(s)
- Grzegorz Sikora
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marek Teuerle
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Agnieszka Wyłomańska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Denis Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| |
Collapse
|
49
|
Directional sensitivity of anomalous diffusion in human brain assessed by tensorial fractional motion model. Magn Reson Imaging 2017; 42:74-81. [PMID: 28577902 DOI: 10.1016/j.mri.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/10/2017] [Accepted: 05/31/2017] [Indexed: 12/27/2022]
Abstract
Anisotropic diffusion in the nervous system is most commonly modeled by apparent diffusion tensor, which is based on regular diffusion theory. However, the departure of diffusion-induced signal attenuation from a mono-exponential form implies that there is anomalous diffusion. Recently, a novel diffusion NMR theory based on the fractional motion (FM) model, which is an anomalous diffusion model, has been proposed. While the FM model has been applied to both healthy subjects and tumor patients, its anisotropy in the nervous system remains elusive. In this study, this issue was addressed by measuring the FM-related parameters in 12 non-collinear directions. A metric to quantify the directional deviation was derived. Furthermore, the FM-related parameters were modeled as tensors and analyzed in analogy with the conventional diffusion tensor imaging (DTI). Experimental results, which were obtained for 15 healthy subjects at 3T, exhibited pronounced anisotropy of the FM-related parameters, although the effects were smaller than the apparent diffusion coefficient (ADC). The tensorial nature for α, which is the Noah exponent in the FM model, showed behavior similar to the ADC, especially the principal eigenvector for α aligned with the dominant white matter fiber directions. The Hurst exponent H in the FM model, however, showed no correlation with the major fiber directions. The anisotropy of the FM model may provide complementary information to DTI and may have potential for tractography and detecting brain abnormalities.
Collapse
|
50
|
Vandebroek H, Vanderzande C. The effect of active fluctuations on the dynamics of particles, motors and DNA-hairpins. SOFT MATTER 2017; 13:2181-2191. [PMID: 28239703 DOI: 10.1039/c6sm02568d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inspired by recent experiments on the dynamics of particles and polymers in artificial cytoskeletons and in cells, we introduce a modified Langevin equation for a particle in an environment that is a viscoelastic medium and that is brought out of equilibrium by the action of active fluctuations caused by molecular motors. We show that within such a model, the motion of a free particle crosses over from superdiffusive to subdiffusive as observed for tracer particles in an in vitro cytoskeleton or in a cell. We investigate the dynamics of a particle confined by a harmonic potential as a simple model for the motion of the tethered head of kinesin-1. We find that the probability that the head is close to its binding site on the microtubule can be enhanced by a factor of two due to active forces. Finally, we study the dynamics of a particle in a double well potential as a model for the dynamics of DNA-hairpins. We show that the active forces effectively lower the potential barrier between the two minima and study the impact of this phenomenon on the zipping/unzipping rate.
Collapse
Affiliation(s)
- Hans Vandebroek
- Faculty of Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
| | - Carlo Vanderzande
- Faculty of Sciences, Hasselt University, 3590 Diepenbeek, Belgium. and Instituut Theoretische Fysica, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| |
Collapse
|