1
|
Shakirov T, Paul W. Aggregation and crystallization of small alkanes. J Chem Phys 2023; 158:094905. [PMID: 36889964 DOI: 10.1063/5.0142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
We present a computer simulation study of the aggregation and ordering of short alkane chains using a united atom model description. Our simulation approach allows us to determine the density of states of our systems and, from those, their thermodynamics for all temperatures. All systems show a first order aggregation transition followed by a low-temperature ordering transition. For a few chain aggregates of intermediate lengths (up to N = 40), we show that these ordering transitions resemble the quaternary structure formation in peptides. In an earlier publication, we have already shown that single alkane chains fold into low-temperature structures, best described as secondary and tertiary structure formation, thus completing this analogy here. The aggregation transition in the thermodynamic limit can be extrapolated in pressure to the ambient pressure for which it agrees well with experimentally known boiling points of short alkanes. Similarly, the chain length dependence of the crystallization transition agrees with known experimental results for alkanes. For small aggregates, for which volume and surface effects are not yet well separated, our method allows us to identify the crystallization in the core of the aggregate and at its surface, individually.
Collapse
Affiliation(s)
- Timur Shakirov
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Wolfgang Paul
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Jaleel AAA, Mandal D, Rajesh R. Hard core lattice gas with third next-nearest neighbor exclusion on triangular lattice: One or two phase transitions? J Chem Phys 2021; 155:224101. [PMID: 34911313 DOI: 10.1063/5.0066098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We obtain the phase diagram of the hard core lattice gas with third nearest neighbor exclusion on the triangular lattice using Monte Carlo simulations that are based on a rejection-free flat histogram algorithm. In a recent paper [Darjani et al., J. Chem. Phys. 151, 104702 (2019)], it was claimed that the lattice gas with third nearest neighbor exclusion undergoes two phase transitions with increasing density with the phase at intermediate densities exhibiting hexatic order with continuously varying exponents. Although a hexatic phase is expected when the exclusion range is large, it has not been seen earlier in hard core lattice gases with short range exclusion. In this paper, by numerically determining the entropies for all densities, we show that there is only a single phase transition in the system between a low-density fluid phase and a high density ordered sublattice phase and that a hexatic phase is absent. The transition is shown to be first order in nature, and the critical parameters are determined accurately.
Collapse
Affiliation(s)
- Asweel Ahmed A Jaleel
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| |
Collapse
|
3
|
Taylor MP, Basnet S, Luettmer-Strathmann J. Partition-function-zero analysis of polymer adsorption for a continuum chain model. Phys Rev E 2021; 104:034502. [PMID: 34654113 DOI: 10.1103/physreve.104.034502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 11/07/2022]
Abstract
Polymer chains undergoing adsorption are expected to show universal critical behavior which may be investigated using partition function zeros. The focus of this work is the adsorption transition for a continuum chain, allowing for investigation of a continuous range of the attractive interaction and comparison with recent high-precision lattice model studies. The partition function (Fisher) zeros for a tangent-hard-sphere N-mer chain (monomer diameter σ) tethered to a flat wall with an attractive square-well potential (range λσ, depth ε) have been computed for chains up to N=1280 with 0.01≤λ≤2.0. In the complex-Boltzmann-factor plane these zeros are concentrated in an annular region, centered on the origin and open about the real axis. With increasing N, the leading zeros, w_{1}(N), approach the positive real axis as described by the asymptotic scaling law w_{1}(N)-y_{c}∼N^{-ϕ}, where y_{c}=e^{ε/k_{B}T_{c}} is the critical point and T_{c} is the critical temperature. In this work, we study the polymer adsorption transition by analyzing the trajectory of the leading zeros as they approach y_{c} in the complex plane. We use finite-size scaling (including corrections to scaling) to determine the critical point and the scaling exponent ϕ as well as the approach angle θ_{c}, between the real axis and the leading-zero trajectory. Variation of the interaction range λ moves the critical point, such that T_{c} decreases with λ, while the results for ϕ and θ_{c} are approximately independent of λ. Our values of ϕ=0.479(9) and θ_{c}=56.8(1.4)^{∘} are in agreement with the best lattice model results for polymer adsorption, further demonstrating the universality of these constants across both lattice and continuum models.
Collapse
Affiliation(s)
- Mark P Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | - Samip Basnet
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | | |
Collapse
|
4
|
Wicks TJ, Wattis JAD, Graham RS. Monte–Carlo simulation of crystallization in single‐chain square‐well homopolymers. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas J. Wicks
- School of Mathematical Sciences University of Nottingham Nottingham UK
| | | | - Richard S. Graham
- School of Mathematical Sciences University of Nottingham Nottingham UK
| |
Collapse
|
5
|
Taylor MP, Vinci C, Suzuki R. Effects of macromolecular crowding on the folding of a polymer chain: A Wang-Landau simulation study. J Chem Phys 2020; 153:174901. [PMID: 33167653 DOI: 10.1063/5.0025640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A flexible polymer chain in the presence of inert macromolecular crowders will experience a loss of configurational entropy due to the crowder excluded volume. This entropy reduction will be most pronounced in good solvent conditions where the chain assumes an expanded coil conformation. For polymers that undergo a folding transition from a coil to a compact ordered state, as is the case for many globular proteins, macromolecular crowding is expected to stabilize the folded state and thereby shift the transition location. Here, we study such entropic stabilization effects for a tangent square-well sphere chain (monomer diameter σ) in the presence of hard-sphere (HS) crowders (diameter D ≥ σ). We use the Wang-Landau simulation algorithm to construct the density of states for this chain in a crowded environment and are thus able to directly compute the reduction in configurational entropy due to crowding. We study both a chain that undergoes all-or-none folding directly from the coil state and a chain that folds via a collapsed-globule intermediate state. In each case, we find an increase in entropic stabilization for the compact states with an increase in crowder density and, for fixed crowder density, with a decrease in crowder size (concentrated, small crowders have the largest effect). The crowder significantly reduces the average size for the unfolded states while having a minimal effect on the size of the folded states. In the athermal limit, our results directly provide the confinement free energy due to crowding for a HS chain in a HS solvent.
Collapse
Affiliation(s)
- Mark P Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | | | - Ryogo Suzuki
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| |
Collapse
|
6
|
Herranz M, Santiago M, Foteinopoulou K, Karayiannis NC, Laso M. Crystal, Fivefold and Glass Formation in Clusters of Polymers Interacting with the Square Well Potential. Polymers (Basel) 2020; 12:polym12051111. [PMID: 32414038 PMCID: PMC7285265 DOI: 10.3390/polym12051111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 11/23/2022] Open
Abstract
We present results, from Monte Carlo (MC) simulations, on polymer systems of freely jointed chains with spherical monomers interacting through the square well potential. Starting from athermal packings of chains of tangent hard spheres, we activate the square well potential under constant volume and temperature corresponding effectively to instantaneous quenching. We investigate how the intensity and range of pair-wise interactions affected the final morphologies by fixing polymer characteristics such as average chain length and tolerance in bond gaps. Due to attraction chains are brought closer together and they form clusters with distinct morphologies. A wide variety of structures is obtained as the model parameters are systematically varied: weak interactions lead to purely amorphous clusters followed by well-ordered ones. The latter include the whole spectrum of crystal morphologies: from virtually perfect hexagonal close packed (HCP) and face centered cubic (FCC) crystals, to random hexagonal close packed layers of single stacking direction of alternating HCP and FCC layers, to structures of mixed HCP/FCC character with multiple stacking directions and defects in the form of twins. Once critical values of interaction are met, fivefold-rich glassy clusters are formed. We discuss the similarities and differences between energy-driven crystal nucleation in thermal polymer systems as opposed to entropy-driven phase transition in athermal polymer packings. We further calculate the local density of each site, its dependence on the distance from the center of the cluster and its correlation with the crystallographic characteristics of the local environment. The short- and long-range conformations of chains are analyzed as a function of the established cluster morphologies.
Collapse
|
7
|
Knežević M, Knežević M. Transverse-size critical exponent of directed percolation from Yang-Lee zeros of survival probability. Phys Rev E 2020; 101:012107. [PMID: 32069588 DOI: 10.1103/physreve.101.012107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 06/10/2023]
Abstract
By using transfer-matrix method we compute survival probabilities for the directed percolation problem on strips of a square lattice, and get very precise estimates of their Yang-Lee zeros lying closest to the real axis in the complex plane of occupation probability. This allows us to get accurate values for transverse-size critical exponent and percolation threshold.
Collapse
Affiliation(s)
- Milan Knežević
- Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade, Serbia
| | - Miloš Knežević
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| |
Collapse
|
8
|
Shakirov T, Paul W. Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions. Phys Rev E 2018; 97:042501. [PMID: 29758595 DOI: 10.1103/physreve.97.042501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 12/19/2022]
Abstract
What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.
Collapse
Affiliation(s)
- T Shakirov
- Institute of Physics, Martin-Luther-University, 06099 Halle, Germany
| | - W Paul
- Institute of Physics, Martin-Luther-University, 06099 Halle, Germany
| |
Collapse
|
9
|
Kim DH. Partition function zeros of the p-state clock model in the complex temperature plane. Phys Rev E 2018; 96:052130. [PMID: 29347725 DOI: 10.1103/physreve.96.052130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 11/07/2022]
Abstract
We investigate the partition function zeros of the two-dimensional p-state clock model in the complex temperature plane by using the Wang-Landau method. For p=5, 6, 8, and 10, we propose a modified energy representation to enumerate exact irregular energy levels for the density of states without any binning artifacts. Comparing the leading zeros between different p's, we provide strong evidence that the upper transition at p=6 is indeed of the Berezinskii-Kosterlitz-Thouless (BKT) type in contrast to the claim of the previous Fisher zero study [Phys. Rev. E 80, 042103 (2009)10.1103/PhysRevE.80.042103]. We find that the leading zeros of p=6 at the upper transition collapse onto the zero trajectories of the larger p's including the XY limit while the finite-size behavior of p=5 differs from the converged behavior of p≥6 within the system sizes examined. In addition, we argue that the nondivergent specific heat in the BKT transition is responsible for the small partition function magnitude that decreases exponentially with increasing system size near the leading zero, fundamentally limiting access to large systems in search for zeros with an estimator under finite statistical fluctuations.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
10
|
Koci T, Bachmann M. Subphase transitions in first-order aggregation processes. Phys Rev E 2017; 95:032502. [PMID: 28415362 DOI: 10.1103/physreve.95.032502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/07/2022]
Abstract
In this paper, we investigate the properties of aggregation transitions in the context of generic coarse-grained homopolymer systems. By means of parallel replica-exchange Monte Carlo methods, we perform extensive simulations of systems consisting of up to 20 individual oligomer chains with five monomers each. Using the tools of the versatile microcanonical inflection-point analysis, we show that the aggregation transition is a first-order process consisting of a sequence of subtransitions between intermediate structural phases. We unravel the properties of these intermediate phases by collecting and analyzing their individual contributions towards the density of states of the system. The central theme of this systematic study revolves around translational entropy and its role in the striking phenomena of missing intermediate phases. We conclude with a brief discussion of the scaling properties of the transition temperature and the latent heat.
Collapse
Affiliation(s)
- Tomas Koci
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA.,Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá (MT), Brazil.,Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
11
|
Taylor MP, Paul W, Binder K. On the polymer physics origins of protein folding thermodynamics. J Chem Phys 2017; 145:174903. [PMID: 27825238 DOI: 10.1063/1.4966645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A remarkable feature of the spontaneous folding of many small proteins is the striking similarity in the thermodynamics of the folding process. This process is characterized by simple two-state thermodynamics with large and compensating changes in entropy and enthalpy and a funnel-like free energy landscape with a free-energy barrier that varies linearly with temperature. One might attribute the commonality of this two-state folding behavior to features particular to these proteins (e.g., chain length, hydrophobic/hydrophilic balance, attributes of the native state) or one might suspect that this similarity in behavior has a more general polymer-physics origin. Here we show that this behavior is also typical for flexible homopolymer chains with sufficiently short range interactions. Two-state behavior arises from the presence of a low entropy ground (folded) state separated from a set of high entropy disordered (unfolded) states by a free energy barrier. This homopolymer model exhibits a funneled free energy landscape that reveals a complex underlying dynamics involving competition between folding and non-folding pathways. Despite the presence of multiple pathways, this simple physics model gives the robust result of two-state thermodynamics for both the cases of folding from a basin of expanded coil states and from a basin of compact globule states.
Collapse
Affiliation(s)
- Mark P Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | - Wolfgang Paul
- Institut für Physik, Martin-Luther-Universität, D-06099 Halle (Saale), Germany
| | - Kurt Binder
- Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| |
Collapse
|
12
|
Werlich B, Taylor MP, Shakirov T, Paul W. On the Pseudo Phase Diagram of Single Semi-Flexible Polymer Chains: A Flat-Histogram Monte Carlo Study. Polymers (Basel) 2017; 9:E38. [PMID: 30970714 PMCID: PMC6432196 DOI: 10.3390/polym9020038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/10/2023] Open
Abstract
Local stiffness of polymer chains is instrumental in all structure formation processes of polymers, from crystallization of synthetic polymers to protein folding and DNA compactification. We present Stochastic Approximation Monte Carlo simulations-a type of flat-histogram Monte Carlo method-determining the density of states of a model class of single semi-flexible polymer chains, and, from this, their complete thermodynamic behavior. The chains possess a rich pseudo phase diagram as a function of stiffness and temperature, displaying non-trivial ground-state morphologies. This pseudo phase diagram also depends on chain length. Differences to existing pseudo phase diagrams of semi-flexible chains in the literature emphasize the fact that the mechanism of stiffness creation matters.
Collapse
Affiliation(s)
- Benno Werlich
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| | - Mark P Taylor
- Department of Physics, Hiram College, Hiram, OH 44234, USA.
| | - Timur Shakirov
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| | - Wolfgang Paul
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| |
Collapse
|
13
|
Merling WL, Mileski JB, Douglas JF, Simmons DS. The Glass Transition of a Single Macromolecule. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01461] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Weston L. Merling
- Department
of Polymer Engineering, The University of Akron, 250 South Forge
St., Akron, Ohio 44325-0301, United States
| | - Johnathon B. Mileski
- Department
of Polymer Engineering, The University of Akron, 250 South Forge
St., Akron, Ohio 44325-0301, United States
| | - Jack F. Douglas
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David S. Simmons
- Department
of Polymer Engineering, The University of Akron, 250 South Forge
St., Akron, Ohio 44325-0301, United States
| |
Collapse
|
14
|
Janke W, Paul W. Thermodynamics and structure of macromolecules from flat-histogram Monte Carlo simulations. SOFT MATTER 2016; 12:642-657. [PMID: 26574738 DOI: 10.1039/c5sm01919b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the last decade flat-histogram Monte Carlo simulations, especially multi-canonical and Wang-Landau simulations, have emerged as a strong tool to study the statistical mechanics of polymer chains. These investigations have focused on coarse-grained models of polymers on the lattice and in the continuum. Phase diagrams of chains in bulk as well as chains attached to surfaces were studied, for homopolymers as well as for protein-like models. Also, aggregation behavior in solution of these models has been investigated. We will present here the theoretical background for these simulations, explain the algorithms used and discuss their performance and give an overview over the systems studied with these methods in the literature, where we will limit ourselves to studies of coarse-grained model systems. Implementations of these algorithms on parallel computers will be also briefly described. In parallel to the development of these simulation methods, the power of a micro-canonical analysis of such simulations has been recognized, and we present the current state of the art in applying the micro-canonical analysis to phase transitions in nanoscopic polymer systems.
Collapse
Affiliation(s)
- Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, 04009 Leipzig, Germany.
| | | |
Collapse
|
15
|
Koci T, Bachmann M. Confinement effects upon the separation of structural transitions in linear systems with restricted bond fluctuation ranges. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042142. [PMID: 26565203 DOI: 10.1103/physreve.92.042142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 06/05/2023]
Abstract
By means of advanced parallel replica-exchange Monte Carlo methods we examine the influence of elasticity and confinement on the structural transitions of linear systems with restricted bonded interaction. For this purpose, we adopt a model for coarse-grained flexible polymers of finite length in the dilute regime. Hyperphase diagrams are constructed using energy-dependent canonical quantities to demonstrate the effects of the changes in the range of the confined interaction on the liquid and solid structural phases. With increasing bonded interaction range we observe the disappearance of the liquid phase and the fusion of the gas-liquid (or Θ) and the liquid-solid transitions. One of the most remarkable features, the liquid-gas transition, changes from second to first order if the confined interaction range exceeds a threshold that separates polymeric from nonpolymeric systems. The notoriously difficult sampling of the entropically suppressed conformations in the region of very strong first-order transitions is improved by using multiple Gaussian modified ensembles.
Collapse
Affiliation(s)
- Tomas Koci
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
- Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá (MT), Brazil
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
16
|
Taylor MP, Luettmer-Strathmann J. Partition function zeros and finite size scaling for polymer adsorption. J Chem Phys 2014; 141:204906. [PMID: 25429961 DOI: 10.1063/1.4902252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mark P. Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | | |
Collapse
|
17
|
Rocha JCS, Schnabel S, Landau DP, Bachmann M. Identifying transitions in finite systems by means of partition function zeros and microcanonical inflection-point analysis: a comparison for elastic flexible polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022601. [PMID: 25215750 DOI: 10.1103/physreve.90.022601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 06/03/2023]
Abstract
For the estimation of transition points of finite elastic, flexible polymers with chain lengths from 13 to 309 monomers, we compare systematically transition temperatures obtained by the Fisher partition function zeros approach with recent results from microcanonical inflection-point analysis. These methods rely on accurate numerical estimates of the density of states, which have been obtained by advanced multicanonical Monte Carlo sampling techniques. Both the Fisher zeros method and microcanonical inflection-point analysis yield very similar results and enable the unique identification of transition points in finite systems, which is typically impossible in the conventional canonical analysis of thermodynamic quantities.
Collapse
Affiliation(s)
- Julio C S Rocha
- Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, USA
| | - Stefan Schnabel
- Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig, Postfach 100920, D-04009 Leipzig, Germany
| | - David P Landau
- Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, USA and Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá (MT), Brazil and Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
18
|
Wang-Landau and Stochastic Approximation Monte Carlo for Semi-flexible Polymer Chains. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.phpro.2014.08.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|