1
|
Liu S, Li F, Wan F. Distance to Criticality Undergoes Critical Transition Before Epileptic Seizure Attacks. Brain Res Bull 2023:110684. [PMID: 37353038 DOI: 10.1016/j.brainresbull.2023.110684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurring seizures, but its underlying mechanisms remain poorly understood. Despite extensive research, there are still gaps in our knowledge about the relationship between brain dynamics and seizures. In this study, our aim is to address these gaps by proposing a novel approach to assess the role of brain network dynamics in the onset of seizures. Specifically, we investigate the relationship between brain dynamics and seizures by tracking the distance to criticality. Our hypothesis is that this distance plays a crucial role in brain state changes and that seizures may be related to critical transitions of this distance. To test this hypothesis, we develop a method to measure the evolution of the brain network's distance to the critical dynamic systems (i.e., the distance to the tipping point, DTP) using dynamic network biomarker theory and random matrix theory. The results show that the DTP of the brain decreases significantly immediately after onset of an epileptic seizure, suggesting that the brain loses its well-defined quasi-critical state during seizures. We refer to this phenomenon as the "criticality of the criticality" (COC). Furthermore, we observe that DTP exhibits a shape transition before and after the onset of the seizures. This phenomenon suggests the possibility of early warning signal (EWS) identification in the dynamic sequence of DTP, which could be utilized for seizure prediction. Our results show that the Hurst exponent, skewness, kurtosis, autocorrelation, and variance of the DTP sequence are potential EWS features. This study advances our understanding of the relationship between brain dynamics and seizures and highlights the potential for using criticality-based measures to predict and prevent seizures.
Collapse
Affiliation(s)
- Shun Liu
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau; The Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau
| | - Fali Li
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, the Center for Information in Bio-Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Wan
- The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau; The Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau; The Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Macau.
| |
Collapse
|
2
|
Diaz MMS, Trejo EJA, Martin DA, Cannas SA, Grigera TS, Chialvo DR. Similar local neuronal dynamics may lead to different collective behavior. Phys Rev E 2021; 104:064309. [PMID: 35030861 DOI: 10.1103/physreve.104.064309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
This report is concerned with the relevance of the microscopic rules that implement individual neuronal activation, in determining the collective dynamics, under variations of the network topology. To fix ideas we study the dynamics of two cellular automaton models, commonly used, rather in-distinctively, as the building blocks of large-scale neuronal networks. One model, due to Greenberg and Hastings (GH), can be described by evolution equations mimicking an integrate-and-fire process, while the other model, due to Kinouchi and Copelli (KC), represents an abstract branching process, where a single active neuron activates a given number of postsynaptic neurons according to a prescribed "activity" branching ratio. Despite the apparent similarity between the local neuronal dynamics of the two models, it is shown that they exhibit very different collective dynamics as a function of the network topology. The GH model shows qualitatively different dynamical regimes as the network topology is varied, including transients to a ground (inactive) state, continuous and discontinuous dynamical phase transitions. In contrast, the KC model only exhibits a continuous phase transition, independently of the network topology. These results highlight the importance of paying attention to the microscopic rules chosen to model the interneuronal interactions in large-scale numerical simulations, in particular when the network topology is far from a mean-field description. One such case is the extensive work being done in the context of the Human Connectome, where a wide variety of types of models are being used to understand the brain collective dynamics.
Collapse
Affiliation(s)
- Margarita M Sánchez Diaz
- Center for Complex Systems and Brain Sciences (CEMSC), Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina.,Instituto de Ciencias Físicas (ICIFI), CONICET and Universidad Nacional de San Martín, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
| | - Eyisto J Aguilar Trejo
- Center for Complex Systems and Brain Sciences (CEMSC), Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina.,Instituto de Ciencias Físicas (ICIFI), CONICET and Universidad Nacional de San Martín, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
| | - Daniel A Martin
- Center for Complex Systems and Brain Sciences (CEMSC), Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina.,Instituto de Ciencias Físicas (ICIFI), CONICET and Universidad Nacional de San Martín, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
| | - Sergio A Cannas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina.,Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Tomás S Grigera
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina.,Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), CONICET and Universidad Nacional de La Plata, Calle 59 no. 789, B1900BTE La Plata, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Dante R Chialvo
- Center for Complex Systems and Brain Sciences (CEMSC), Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina.,Instituto de Ciencias Físicas (ICIFI), CONICET and Universidad Nacional de San Martín, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
| |
Collapse
|
3
|
Kinouchi O, Brochini L, Costa AA, Campos JGF, Copelli M. Stochastic oscillations and dragon king avalanches in self-organized quasi-critical systems. Sci Rep 2019; 9:3874. [PMID: 30846773 PMCID: PMC6405991 DOI: 10.1038/s41598-019-40473-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/28/2019] [Indexed: 12/04/2022] Open
Abstract
In the last decade, several models with network adaptive mechanisms (link deletion-creation, dynamic synapses, dynamic gains) have been proposed as examples of self-organized criticality (SOC) to explain neuronal avalanches. However, all these systems present stochastic oscillations hovering around the critical region that are incompatible with standard SOC. Here we make a linear stability analysis of the mean field fixed points of two self-organized quasi-critical systems: a fully connected network of discrete time stochastic spiking neurons with firing rate adaptation produced by dynamic neuronal gains and an excitable cellular automata with depressing synapses. We find that the fixed point corresponds to a stable focus that loses stability at criticality. We argue that when this focus is close to become indifferent, demographic noise can elicit stochastic oscillations that frequently fall into the absorbing state. This mechanism interrupts the oscillations, producing both power law avalanches and dragon king events, which appear as bands of synchronized firings in raster plots. Our approach differs from standard SOC models in that it predicts the coexistence of these different types of neuronal activity.
Collapse
Affiliation(s)
- Osame Kinouchi
- Universidade de São Paulo, Departamento de Física-FFCLRP, Ribeirão Preto, SP, Brazil.
| | - Ludmila Brochini
- Universidade de São Paulo, Instituto de Matemática e Estatística, São Paulo, SP, Brazil
| | - Ariadne A Costa
- Universidade Federal de Goiás, Unidade Acadêmica Especial de Ciências Exatas, Jataí, GO, Brazil
| | | | - Mauro Copelli
- Universidade de São Paulo, Departamento de Física-FFCLRP, Ribeirão Preto, SP, Brazil.,Universidade Federal de Pernambuco, Departamento de Física, Recife, PE, Brazil
| |
Collapse
|
4
|
Gollo LL. Coexistence of critical sensitivity and subcritical specificity can yield optimal population coding. J R Soc Interface 2017; 14:20170207. [PMID: 28954848 PMCID: PMC5636266 DOI: 10.1098/rsif.2017.0207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/17/2017] [Indexed: 11/12/2022] Open
Abstract
The vicinity of phase transitions selectively amplifies weak stimuli, yielding optimal sensitivity to distinguish external input. Along with this enhanced sensitivity, enhanced levels of fluctuations at criticality reduce the specificity of the response. Given that the specificity of the response is largely compromised when the sensitivity is maximal, the overall benefit of criticality for signal processing remains questionable. Here, it is shown that this impasse can be solved by heterogeneous systems incorporating functional diversity, in which critical and subcritical components coexist. The subnetwork of critical elements has optimal sensitivity, and the subnetwork of subcritical elements has enhanced specificity. Combining segregated features extracted from the different subgroups, the resulting collective response can maximize the trade-off between sensitivity and specificity measured by the dynamic-range-to-noise ratio. Although numerous benefits can be observed when the entire system is critical, our results highlight that optimal performance is obtained when only a small subset of the system is at criticality.
Collapse
Affiliation(s)
- Leonardo L Gollo
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia
| |
Collapse
|
5
|
Cocchi L, Gollo LL, Zalesky A, Breakspear M. Criticality in the brain: A synthesis of neurobiology, models and cognition. Prog Neurobiol 2017; 158:132-152. [PMID: 28734836 DOI: 10.1016/j.pneurobio.2017.07.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 11/26/2022]
Abstract
Cognitive function requires the coordination of neural activity across many scales, from neurons and circuits to large-scale networks. As such, it is unlikely that an explanatory framework focused upon any single scale will yield a comprehensive theory of brain activity and cognitive function. Modelling and analysis methods for neuroscience should aim to accommodate multiscale phenomena. Emerging research now suggests that multi-scale processes in the brain arise from so-called critical phenomena that occur very broadly in the natural world. Criticality arises in complex systems perched between order and disorder, and is marked by fluctuations that do not have any privileged spatial or temporal scale. We review the core nature of criticality, the evidence supporting its role in neural systems and its explanatory potential in brain health and disease.
Collapse
Affiliation(s)
- Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Metro North Mental Health Service, Brisbane, Australia
| |
Collapse
|
6
|
Girardi-Schappo M, Bortolotto GS, Gonsalves JJ, Pinto LT, Tragtenberg MHR. Griffiths phase and long-range correlations in a biologically motivated visual cortex model. Sci Rep 2016; 6:29561. [PMID: 27435679 PMCID: PMC4951650 DOI: 10.1038/srep29561] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves' size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f (b) power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f (b) power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.
Collapse
Affiliation(s)
- M Girardi-Schappo
- Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - G S Bortolotto
- Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J J Gonsalves
- Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - L T Pinto
- Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - M H R Tragtenberg
- Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
7
|
Gollo LL, Copelli M, Roberts JA. Diversity improves performance in excitable networks. PeerJ 2016; 4:e1912. [PMID: 27168961 PMCID: PMC4860327 DOI: 10.7717/peerj.1912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 11/20/2022] Open
Abstract
As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities.
Collapse
Affiliation(s)
- Leonardo L Gollo
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco , Recife PE , Brazil
| | - James A Roberts
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Mosqueiro TS, Huerta R. Computational models to understand decision making and pattern recognition in the insect brain. CURRENT OPINION IN INSECT SCIENCE 2014; 6:80-85. [PMID: 25593793 PMCID: PMC4289906 DOI: 10.1016/j.cois.2014.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Odor stimuli reaching olfactory systems of mammals and insects are characterized by remarkable non-stationary and noisy time series. Their brains have evolved to discriminate subtle changes in odor mixtures and find meaningful variations in complex spatio-temporal patterns. Insects with small brains can effectively solve two computational tasks: identify the presence of an odor type and estimate the concentration levels of the odor. Understanding the learning and decision making processes in the insect brain can not only help us to uncover general principles of information processing in the brain, but it can also provide key insights to artificial chemical sensing. Both olfactory learning and memory are dominantly organized in the Antennal Lobe (AL) and the Mushroom Bodies (MBs). Current computational models yet fail to deliver an integrated picture of the joint computational roles of the AL and MBs. This review intends to provide an integrative overview of the computational literature analyzed in the context of the problem of classification (odor discrimination) and regression (odor concentration estimation), particularly identifying key computational ingredients necessary to solve pattern recognition.
Collapse
|
9
|
Williams-García RV, Moore M, Beggs JM, Ortiz G. Quasicritical brain dynamics on a nonequilibrium Widom line. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062714. [PMID: 25615136 DOI: 10.1103/physreve.90.062714] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Indexed: 06/04/2023]
Abstract
Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom line where the correlation length and information transmission are optimized. We simulate the network and introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system exhibits a "quasiperiodic" phase corresponding to synchronous activity in simulations, which may be related to the pathological synchronization associated with epilepsy.
Collapse
Affiliation(s)
| | - Mark Moore
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - John M Beggs
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - Gerardo Ortiz
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|