1
|
Langeslay B, Juarez G. Strain rate controls alignment in growing bacterial monolayers. SOFT MATTER 2024; 20:8468-8479. [PMID: 39404596 DOI: 10.1039/d4sm00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Growing monolayers of rod-shaped bacteria exhibit local alignment similarly to extensile active nematics. When confined in a channel or growing inward from a ring, the local nematic order of these monolayers changes to a global ordering with cells throughout the monolayer orienting in the same direction. The mechanism behind this phenomenon is so far unclear, as previously proposed mechanisms fail to predict the correct alignment direction in one or more confinement geometries. We present a strain-based model relating net deformation of the growing monolayer to the cell-level deformation resulting from single-cell growth and rotation, producing predictions of cell orientation behavior based on the velocity field in the monolayer. This model correctly predicts the direction of preferential alignment in channel-confined, inward growing, and unconfined colonies. The model also quantitatively predicts orientational order when the velocity field has no net negative strain rate in any direction. We further test our model in simulations of expanding colonies confined to spherical surfaces. Our model and simulations agree that cells away from the origin cell orient radially relative to the colony's center. Additionally, our model's quantitative prediction of the orientational order agrees with the simulation results in the top half of the sphere but fails in the lower half where there is a net negative strain rate. The success of our model bridges the gap between previous works on cell alignment in disparate confinement geometries and provides insight into the underlying physical effects responsible for large-scale alignment.
Collapse
Affiliation(s)
- Blake Langeslay
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gabriel Juarez
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
2
|
Langeslay B, Fahy W, Juarez G. Stress and alignment response to curved obstacles in growing bacterial monolayers. Phys Rev E 2024; 109:054608. [PMID: 38907398 DOI: 10.1103/physreve.109.054608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/09/2024] [Indexed: 06/24/2024]
Abstract
Monolayers of growing bacteria, confined within channel geometries, exhibit self-organization into a highly aligned laminar state along the axis of the channel. Although this phenomenon has been observed in experiments and simulations under various boundary conditions, the underlying physical mechanism driving this alignment remains unclear. In this study, we conduct simulations of growing bacteria in two-dimensional channel geometries perturbed by fixed obstacles, either circular or arc shaped, placed at the channel's center. Our findings reveal that even sizable obstacles cause only short-ranged disruptions to the baseline laminar state. These disruptions arise from a competition between local planar anchoring and bulk laminar alignment. At smaller obstacle sizes, bulk alignment fully dominates, while at larger sizes planar anchoring induces increasing local disruptions. Furthermore, our analysis indicates that the resulting configurations of the bacterial system display a striking resemblance to the arrangement of hard-rod smectic liquid crystals around circular obstacles. This suggests that modeling hard-rod bacterial monolayers as smectic, rather than nematic, liquid crystals may yield successful outcomes. The insights gained from our study contribute to the expanding body of research on bacterial growth in channels. Our work provides perspectives on the stability of the laminar state and extends our understanding to encompass more intricate confinement schemes.
Collapse
|
3
|
Maleki F, Najafi A. Instabilities in a growing system of active particles: scalar and vectorial systems. SOFT MATTER 2023; 19:8157-8163. [PMID: 37850327 DOI: 10.1039/d3sm00880k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The physics of micron-scale biological colonies usually benefits from different out-of-equilibrium sources. In bacterial colonies and cellular tissues, the growth process is among the important active sources that determine the dynamics. In this article, we study the generic dynamical instabilities associated with the growth phenomena that may arise in both scalar and vectorial systems. In vectorial systems, where the rotational degrees of particles play a role, a phenomenological growth-mediated torque can affect the rotational dynamics of individual particles. We show that such a growth-mediated torque can result in active traveling waves in the bulk of a growing system. In addition to the bulk properties, we analyze the instabilities in the shape of growing interfaces in both scalar and vectorial systems.
Collapse
Affiliation(s)
- Forouh Maleki
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ali Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.
| |
Collapse
|
4
|
Langeslay B, Juarez G. Microdomains and stress distributions in bacterial monolayers on curved interfaces. SOFT MATTER 2023; 19:3605-3613. [PMID: 37161525 DOI: 10.1039/d2sm01498j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Monolayers of growing non-motile rod-shaped bacteria act as active nematic materials composed of hard particles rather than the flexible components of other commonly studied active nematics. The organization of these granular monolayers has been studied on flat surfaces but not on curved surfaces, which are known to change the behavior of other active nematics. We use molecular dynamics simulations to track alignment and stress in growing monolayers fixed to curved surfaces, and investigate how these vary with changing surface curvature and cell aspect ratio. We find that the length scale of alignment (measured by average microdomain size) increases with cell aspect ratio and decreases with curvature. Additionally, we find that alignment controls the distribution of extensile stresses in the monolayer by concentrating stress in negative-order regions. These results connect active nematic physics to bacterial monolayers and can be applied to model bacteria growing on droplets, such as oil-degrading marine bacteria.
Collapse
Affiliation(s)
- Blake Langeslay
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gabriel Juarez
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
5
|
Isensee J, Hupe L, Golestanian R, Bittihn P. Stress anisotropy in confined populations of growing rods. J R Soc Interface 2022; 19:20220512. [PMID: 36349447 PMCID: PMC9653230 DOI: 10.1098/rsif.2022.0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
A central feature of living matter is its ability to grow and multiply. The mechanical activity associated with growth produces both macroscopic flows shaped by confinement, and striking self-organization phenomena, such as orientational order and alignment, which are particularly prominent in populations of rod-shaped bacteria due to their nematic properties. However, how active stresses, passive mechanical interactions and flow-induced effects interact to give rise to the observed global alignment patterns remains elusive. Here, we study in silico colonies of growing rod-shaped particles of different aspect ratios confined in channel-like geometries. A spatially resolved analysis of the stress tensor reveals a strong relationship between near-perfect alignment and an inversion of stress anisotropy for particles with large length-to-width ratios. We show that, in quantitative agreement with an asymptotic theory, strong alignment can lead to a decoupling of active and passive stresses parallel and perpendicular to the direction of growth, respectively. We demonstrate the robustness of these effects in a geometry that provides less restrictive confinement and introduces natural perturbations in alignment. Our results illustrate the complexity arising from the inherent coupling between nematic order and active stresses in growing active matter, which is modulated by geometric and configurational constraints due to confinement.
Collapse
Affiliation(s)
- Jonas Isensee
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Göttingen 37077, Germany
| | - Lukas Hupe
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Göttingen 37077, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Göttingen 37077, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Göttingen 37077, Germany
| |
Collapse
|
6
|
You Z, Pearce DJG, Giomi L. Confinement-induced self-organization in growing bacterial colonies. SCIENCE ADVANCES 2021; 7:eabc8685. [PMID: 33523940 PMCID: PMC10670964 DOI: 10.1126/sciadv.abc8685] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
We investigate the emergence of global alignment in colonies of dividing rod-shaped cells under confinement. Using molecular dynamics simulations and continuous modeling, we demonstrate that geometrical anisotropies in the confining environment give rise to an imbalance in the normal stresses, which, in turn, drives a collective rearrangement of the cells. This behavior crucially relies on the colony's solid-like mechanical response at short time scales and can be recovered within the framework of active hydrodynamics upon modeling bacterial colonies as growing viscoelastic gels characterized by Maxwell-like stress relaxation.
Collapse
Affiliation(s)
- Zhihong You
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Daniel J G Pearce
- Department of Theoretical Physics, Université de Genève, 1205 Genève, Switzerland
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands.
| |
Collapse
|
7
|
You Z, Pearce DJG, Sengupta A, Giomi L. Mono- to Multilayer Transition in Growing Bacterial Colonies. PHYSICAL REVIEW LETTERS 2019; 123:178001. [PMID: 31702266 DOI: 10.1103/physrevlett.123.178001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/20/2019] [Indexed: 06/10/2023]
Abstract
The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in biofilm development. Observed across different morphotypes and species, this transition is triggered within freely growing bacterial microcolonies comprising a few hundred cells. Using a combination of numerical simulations and analytical modeling, here we demonstrate that this transition originates from the competition between growth-induced in-plane active stresses and vertical restoring forces, due to the cell-substrate interactions. Using a simple chainlike colony of laterally confined cells, we show that the transition sets when individual cells become unstable to rotations; thus it is localized and mechanically deterministic. Asynchronous cell division renders the process stochastic, so that all the critical parameters that control the onset of the transition are continuously distributed random variables. Here we demonstrate that the occurrence of the first division in the colony can be approximated as a Poisson process in the limit of large cell numbers. This allows us to approximately calculate the probability distribution function of the position and time associated with the first extrusion. The rate of such a Poisson process can be identified as the order parameter of the transition, thus highlighting its mixed deterministic-stochastic nature.
Collapse
Affiliation(s)
- Zhihong You
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Daniel J G Pearce
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Anupam Sengupta
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
8
|
Yan W, Zhang H, Shelley MJ. Computing collision stress in assemblies of active spherocylinders: Applications of a fast and generic geometric method. J Chem Phys 2019; 150:064109. [DOI: 10.1063/1.5080433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wen Yan
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, USA
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| | - Huan Zhang
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- Zhiyuan College and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Michael J. Shelley
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, USA
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|