1
|
Yang Y, Shan M, Kan X, Duan K, Han Q, Juan Y. Thermodynamic effects of gas adiabatic index on cavitation bubble collapse. Heliyon 2023; 9:e20532. [PMID: 37876463 PMCID: PMC10590803 DOI: 10.1016/j.heliyon.2023.e20532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
In this paper, an improved multicomponent lattice Boltzmann model is employed to investigate the impact of the gas properties, specifically the gas adiabatic index, on the thermodynamic effects of cavitation bubble collapse. The study focuses on analyzing the temperature evolution in the flow field and the resulting thermal effects on the surrounding wall. The accuracy of the developed model is verified through comparisons with analytical solutions of the Rayleigh-Plesset equation and the validation of the adiabatic law. Then, a thermodynamic model of cavitation bubble composed of two-mixed gases collapsing near a wall is established to explore the influence of the gas adiabatic index γ on the temperature behavior. Key findings include the observation that the γ affects the temperature of the first collapse significantly, while its influence on the second collapse is minimal. Additionally, the presence of low-temperature regions near the bubble surface during collapse impacts both bubble and wall temperatures. The study also demonstrates that the γ affects maximum and minimum wall temperatures. The results have implications for selecting specific non-condensable gas properties within cavitation bubbles for targeted cooling or heating purposes, including potential applications in electronic component cooling and environmental refrigeration.
Collapse
Affiliation(s)
- Yu Yang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Minglei Shan
- Jiangsu Key Laboratory of power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China
| | - Xuefen Kan
- Department of Transportation Engineering, Jiangsu Shipping College, Nantong 226000, China
| | - Kangjun Duan
- Helmholtz Institute Ulm, Karlsruhe Institute of Technology, Ulm, 89081, Germany
| | - Qingbang Han
- Jiangsu Key Laboratory of power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China
| | - Yue Juan
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Li Q, Yu Y, Luo KH. Improved three-dimensional thermal multiphase lattice Boltzmann model for liquid-vapor phase change. Phys Rev E 2022; 105:025308. [PMID: 35291096 DOI: 10.1103/physreve.105.025308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Modeling liquid-vapor phase change using the lattice Boltzmann (LB) method has attracted significant attention in recent years. In this paper, we propose an improved three-dimensional thermal multiphase LB model for simulating liquid-vapor phase change. The proposed model has the following features. First, it is still within the framework of the thermal LB method using a temperature distribution function and therefore retains the fundamental advantages of the thermal LB method. Second, in the existing thermal LB models for liquid-vapor phase change, the finite-difference computations of the gradient terms ∇·u and ∇T usually require special treatment at boundary nodes, while in the proposed thermal LB model these two terms are calculated locally. Moreover, in some of the existing thermal LB models, the error term ∂_{t_{0}}(Tu) is eliminated by adding local correction terms to the collision process in the moment space, which causes these thermal LB models to be limited to the D2Q9 lattice in two dimensions and the D3Q15 or D3Q19 lattice in three dimensions. Conversely, the proposed model does not suffer from such an error term and therefore the thermal LB equation can be constructed on the D3Q7 lattice, which simplifies the model and improves the computational efficiency. Numerical simulations are carried out to validate the accuracy and efficiency of the proposed thermal multiphase LB model for simulating liquid-vapor phase change.
Collapse
Affiliation(s)
- Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Y Yu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
3
|
Fei L, Qin F, Wang G, Luo KH, Derome D, Carmeliet J. Droplet evaporation in finite-size systems: Theoretical analysis and mesoscopic modeling. Phys Rev E 2022; 105:025101. [PMID: 35291136 DOI: 10.1103/physreve.105.025101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The classical D^{2}-Law states that the square of the droplet diameter decreases linearly with time during its evaporation process, i.e., D^{2}(t)=D_{0}^{2}-Kt, where D_{0} is the droplet initial diameter and K is the evaporation constant. Though the law has been widely verified by experiments, considerable deviations are observed in many cases. In this work, a revised theoretical analysis of the single droplet evaporation in finite-size open systems is presented for both two-dimensional (2D) and 3D cases. Our analysis shows that the classical D^{2}-Law is only applicable for 3D large systems (L≫D_{0}, L is the system size), while significant deviations occur for small (L≤5D_{0}) and/or 2D systems. Theoretical solution for the temperature field is also derived. Moreover, we discuss in detail the proper numerical implementation of droplet evaporation in finite-size open systems by the mesoscopic lattice Boltzmann method (LBM). Taking into consideration shrinkage effects and an adaptive pressure boundary condition, droplet evaporation in finite-size 2D/3D systems with density ratio up to 328 within a wide parameter range (K=[0.003,0.18] in lattice units) is simulated, and remarkable agreement with the theoretical solution is achieved, in contrast to previous simulations. The present work provides insights into realistic droplet evaporation phenomena and their numerical modeling using diffuse-interface methods.
Collapse
Affiliation(s)
- Linlin Fei
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Geng Wang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Dominique Derome
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| |
Collapse
|
4
|
Huang R, Wu H, Adams NA. Mesoscopic Lattice Boltzmann Modeling of the Liquid-Vapor Phase Transition. PHYSICAL REVIEW LETTERS 2021; 126:244501. [PMID: 34213940 DOI: 10.1103/physrevlett.126.244501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
We develop a mesoscopic lattice Boltzmann model for liquid-vapor phase transition by handling the microscopic molecular interaction. The short-range molecular interaction is incorporated by recovering an equation of state for dense gases, and the long-range molecular interaction is mimicked by introducing a pairwise interaction force. Double distribution functions are employed, with the density distribution function for the mass and momentum conservation laws and an innovative total kinetic energy distribution function for the energy conservation law. The recovered mesomacroscopic governing equations are fully consistent with kinetic theory, and thermodynamic consistency is naturally satisfied.
Collapse
Affiliation(s)
- Rongzong Huang
- School of Energy Science and Engineering, Central South University, 410083 Changsha, China
| | - Huiying Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Nikolaus A Adams
- Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
5
|
Sugimoto M, Sawada Y, Kaneda M, Suga K. Consistent evaporation formulation for the phase-field lattice Boltzmann method. Phys Rev E 2021; 103:053307. [PMID: 34134238 DOI: 10.1103/physreve.103.053307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/03/2021] [Indexed: 11/07/2022]
Abstract
A consistent evaporation model is developed for the conservative Allen-Cahn-based phase-field lattice Boltzmann method that uses an appropriate source term to recover the advection-diffusion equation for the specific humidity. To evaluate the accuracy of the proposed scheme, simulations are conducted of a steady-state one-dimensional Stefan flow for a flat interface and a three-dimensional evaporating sessile droplet on a flat substrate for a curved interface. It is confirmed that the results for the evaporative mass flux of the Stefan flow agree well with those obtained from the analytical solution within a specific humidity range of 0.8 or less at the liquid-gas interface. For the sessile droplet case, the results for the dependence of the contact angle on the evaporative mass flux and its profile show good agreement with those obtained from the model of Hu and Larson [J. Phys. Chem. B 106, 1334 (2002)JPCBFK1520-610610.1021/jp0118322].
Collapse
Affiliation(s)
- Makoto Sugimoto
- Department of Mechanical Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Yuta Sawada
- Department of Mechanical Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Masayuki Kaneda
- Department of Mechanical Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Kazuhiko Suga
- Department of Mechanical Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Kinetic Simulations of Compressible Non-Ideal Fluids: From Supercritical Flows to Phase-Change and Exotic Behavior. COMPUTATION 2021. [DOI: 10.3390/computation9020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigate a kinetic model for compressible non-ideal fluids. The model imposes the local thermodynamic pressure through a rescaling of the particle’s velocities, which accounts for both long- and short-range effects and hence full thermodynamic consistency. The model is fully Galilean invariant and treats mass, momentum, and energy as local conservation laws. The analysis and derivation of the hydrodynamic limit is followed by the assessment of accuracy and robustness through benchmark simulations ranging from the Joule–Thompson effect to a phase-change and high-speed flows. In particular, we show the direct simulation of the inversion line of a van der Waals gas followed by simulations of phase-change such as the one-dimensional evaporation of a saturated liquid, nucleate, and film boiling and eventually, we investigate the stability of a perturbed strong shock front in two different fluid mediums. In all of the cases, we find excellent agreement with the corresponding theoretical analysis and experimental correlations. We show that our model can operate in the entire phase diagram, including super- as well as sub-critical regimes and inherently captures phase-change phenomena.
Collapse
|
7
|
Hosseini SA, Safari H, Thevenin D. Lattice Boltzmann Solver for Multiphase Flows: Application to High Weber and Reynolds Numbers. ENTROPY 2021; 23:e23020166. [PMID: 33573067 PMCID: PMC7911600 DOI: 10.3390/e23020166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
The lattice Boltzmann method, now widely used for a variety of applications, has also been extended to model multiphase flows through different formulations. While already applied to many different configurations in low Weber and Reynolds number regimes, applications to higher Weber/Reynolds numbers or larger density/viscosity ratios are still the topic of active research. In this study, through a combination of a decoupled phase-field formulation—the conservative Allen–Cahn equation—and a cumulant-based collision operator for a low-Mach pressure-based flow solver, we present an algorithm that can be used for higher Reynolds/Weber numbers. The algorithm was validated through a variety of test cases, starting with the Rayleigh–Taylor instability in both 2D and 3D, followed by the impact of a droplet on a liquid sheet. In all simulations, the solver correctly captured the flow dynamics andmatched reference results very well. As the final test case, the solver was used to model droplet splashing on a thin liquid sheet in 3D with a density ratio of 1000 and kinematic viscosity ratio of 15, matching the water/air system at We = 8000 and Re = 1000. Results showed that the solver correctly captured the fingering instabilities at the crown rim and their subsequent breakup, in agreement with experimental and numerical observations reported in the literature.
Collapse
Affiliation(s)
- Seyed Ali Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg “Otto von Guericke”, D-39106 Magdeburg, Germany; (H.S.); (D.T.)
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
- Correspondence:
| | - Hesameddin Safari
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg “Otto von Guericke”, D-39106 Magdeburg, Germany; (H.S.); (D.T.)
| | - Dominique Thevenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg “Otto von Guericke”, D-39106 Magdeburg, Germany; (H.S.); (D.T.)
| |
Collapse
|
8
|
Jannati K, Rahimian MH, Moradi M. Pinning-depinning of the contact line during drop evaporation on textured surfaces: A lattice Boltzmann study. Phys Rev E 2020; 102:033106. [PMID: 33075889 DOI: 10.1103/physreve.102.033106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The evaporation of the liquid droplet on a structured surface is numerically investigated using the lattice Boltzmann method. Simulations are carried out for different contact angles and pillar widths. From the simulation for the Cassie state, it is found that the evaporation starts in a pinned contact line mode. Then, when the droplet reaches the receding state, the contact line jumps to the neighboring pillar. Also, the depinning force decreases with increasing the contact angle or the pillar width. In the Wenzel state, the droplet contact line remains on the initial pillar for all of its lifetime.
Collapse
Affiliation(s)
- Kamal Jannati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Mostafa Moradi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Yazdi H, Rahimian MH, Safari H. A lattice Boltzmann model for computing compressible two-phase flows with high density ratio. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-019-1872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Sharma KV, Straka R, Tavares FW. Lattice Boltzmann Methods for Industrial Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keerti Vardhan Sharma
- Escola de Química, Federal University of Rio de Janeiro, CEP: 21949-900, Rio de Janeiro, Brazil
- PEQ/COPPE, Federal University of Rio de Janeiro, CEP: 24210-240, Rio de Janeiro, Brazil
| | - Robert Straka
- Department of Heat Engineering and Environment Protection, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Frederico Wanderley Tavares
- Escola de Química, Federal University of Rio de Janeiro, CEP: 21949-900, Rio de Janeiro, Brazil
- PEQ/COPPE, Federal University of Rio de Janeiro, CEP: 24210-240, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Hosseini SA, Coreixas C, Darabiha N, Thévenin D. Stability of the lattice kinetic scheme and choice of the free relaxation parameter. Phys Rev E 2019; 99:063305. [PMID: 31330723 DOI: 10.1103/physreve.99.063305] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 11/07/2022]
Abstract
The lattice kinetic scheme (LKS), a modified version of the classical single relaxation time (SRT) lattice Boltzmann method, was initially developed as a suitable numerical approach for non-Newtonian flow simulations and a way to reduce memory consumption of the original SRT approach. The better performances observed for non-Newtonian flows are mainly due to the additional degree of freedom allowing an independent control over the relaxation of higher-order moments, independently from the fluid viscosity. Although widely applied to fluid flow simulations, no theoretical analysis of LKS has been performed. The present work focuses on a systematic von Neumann analysis of the linearized collision operator. Thanks to this analysis, the effects of the modified collision operator on the stability domain and spectral behavior of the scheme are clarified. Results obtained in this study show that correct choices of the "second relaxation coefficient" lead, to a certain extent, to a more consistent dispersion and dissipation for large values of the first relaxation coefficient. Furthermore, appropriate values of this parameter can lead to a larger linear stability domain. At moderate and low values of viscosity, larger values of the free parameter are observed to increase dissipation of kinetic modes, while leaving the acoustic modes untouched and having a less pronounced effect on the convective mode. This increased dissipation leads in general to less pronounced sources of nonlinear instability, thus improving the stability of the LKS.
Collapse
Affiliation(s)
- S A Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany.,Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France.,International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - C Coreixas
- Department of Computer Science, University of Geneva, Geneva, Switzerland
| | - N Darabiha
- Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France
| | - D Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke," D-39106 Magdeburg, Germany
| |
Collapse
|
12
|
Haghani Hassan Abadi R, Fakhari A, Rahimian MH. Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods. Phys Rev E 2018; 97:033312. [PMID: 29776137 DOI: 10.1103/physreve.97.033312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 06/08/2023]
Abstract
In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of the model. The proposed model can successfully simulate both partial and total spreadings while reducing the parasitic currents to the machine precision.
Collapse
Affiliation(s)
| | - Abbas Fakhari
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Pennsylvania 19104, USA
| | | |
Collapse
|
13
|
Li Q, Zhou P, Yan HJ. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change. Phys Rev E 2017; 96:063303. [PMID: 29347407 DOI: 10.1103/physreve.96.063303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Indexed: 06/07/2023]
Abstract
In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012)10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇·(λ∇T)/∇·(λ∇T)ρc_{V}ρc_{V} with ∇·(χ∇T) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂_{t_{0}}(Tv)+∇·(Tvv), which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇·(λ∇T)/∇·(λ∇T)ρc_{V}ρc_{V} with ∇·(χ∇T) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.
Collapse
Affiliation(s)
- Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - P Zhou
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - H J Yan
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Yang X, Kong SC. Smoothed particle hydrodynamics method for evaporating multiphase flows. Phys Rev E 2017; 96:033309. [PMID: 29346906 DOI: 10.1103/physreve.96.033309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 06/07/2023]
Abstract
The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.
Collapse
Affiliation(s)
- Xiufeng Yang
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Song-Charng Kong
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
15
|
A Non-Isothermal Chemical Lattice Boltzmann Model Incorporating Thermal Reaction Kinetics and Enthalpy Changes. COMPUTATION 2017. [DOI: 10.3390/computation5030037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Mohammadi-Shad M, Lee T. Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver. Phys Rev E 2017; 96:013306. [PMID: 29347090 DOI: 10.1103/physreve.96.013306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 06/07/2023]
Abstract
The main objective of this paper is to extend an isothermal incompressible two-phase lattice Boltzmann equation method to model liquid-vapor phase change problems using a sharp-interface energy solver. Two discrete particle distribution functions, one for the continuity equation and the other for the pressure evolution and momentum equations, are considered in the current model. The sharp-interface macroscopic internal energy equation is discretized with an isotropic finite difference method to find temperature distribution in the system. The mass flow generated at liquid-vapor phase interface is embedded in the pressure evolution equation. The sharp-interface treatment of internal energy equation helps to find the interfacial mass flow rate accurately where no free parameter is needed in the calculations. The proposed model is verified against available theoretical solutions of the two-phase Stefan problem and the two-phase sucking interface problem, with which our simulation results are in good agreement. The liquid droplet evaporation in a superheated vapor, the vapor bubble growth in a superheated liquid, and the vapor bubble rising in a superheated liquid are analyzed and underlying physical characteristics are discussed in detail. The model is successfully tested for the liquid-vapor phase change with large density ratio up to 1000.
Collapse
Affiliation(s)
- Mahmood Mohammadi-Shad
- Department of Mechanical Engineering, City College of City University of New York, New York 10031, USA
| | - Taehun Lee
- Department of Mechanical Engineering, City College of City University of New York, New York 10031, USA
| |
Collapse
|
17
|
Ashna M, Rahimian MH, Fakhari A. Extended lattice Boltzmann scheme for droplet combustion. Phys Rev E 2017; 95:053301. [PMID: 28618617 DOI: 10.1103/physreve.95.053301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 06/07/2023]
Abstract
The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.
Collapse
Affiliation(s)
- Mostafa Ashna
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Abbas Fakhari
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
18
|
Li Q, Kang QJ, Francois MM, Hu AJ. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. SOFT MATTER 2016; 12:302-312. [PMID: 26467921 DOI: 10.1039/c5sm01353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated using a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D(2) law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.
Collapse
Affiliation(s)
- Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China and Computational Earth Science Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Q J Kang
- Computational Earth Science Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - M M Francois
- Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A J Hu
- School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
19
|
Albernaz D, Do-Quang M, Amberg G. Multirelaxation-time lattice Boltzmann model for droplet heating and evaporation under forced convection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:043012. [PMID: 25974585 DOI: 10.1103/physreve.91.043012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 06/04/2023]
Abstract
We investigate the evaporation of a droplet surrounded by superheated vapor with relative motion between phases. The evaporating droplet is a challenging process, as one must take into account the transport of mass, momentum, and heat. Here a lattice Boltzmann method is employed where phase change is controlled by a nonideal equation of state. First, numerical simulations are compared to the D(2) law for a vaporizing static droplet and good agreement is observed. Results are then presented for a droplet in a Lagrangian frame under a superheated vapor flow. Evaporation is described in terms of the temperature difference between liquid-vapor and the inertial forces. The internal liquid circulation driven by surface-shear stresses due to convection enhances the evaporation rate. Numerical simulations demonstrate that for higher Reynolds numbers, the dynamics of vaporization flux can be significantly affected, which may cause an oscillatory behavior on the droplet evaporation. The droplet-wake interaction and local mass flux are discussed in detail.
Collapse
Affiliation(s)
- Daniel Albernaz
- Linné Flow Center, Department of Mechanics, The Royal Institute of Technology, Stockholm, Sweden
| | - Minh Do-Quang
- Linné Flow Center, Department of Mechanics, The Royal Institute of Technology, Stockholm, Sweden
| | - Gustav Amberg
- Linné Flow Center, Department of Mechanics, The Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
20
|
Ledesma-Aguilar R, Vella D, Yeomans JM. Lattice-Boltzmann simulations of droplet evaporation. SOFT MATTER 2014; 10:8267-8275. [PMID: 25186667 DOI: 10.1039/c4sm01291g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes.
Collapse
Affiliation(s)
- Rodrigo Ledesma-Aguilar
- Oxford Centre for Collaborative Applied Mathematics, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | | | | |
Collapse
|
21
|
Safari H, Rahimian MH, Krafczyk M. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033305. [PMID: 25314562 DOI: 10.1103/physreve.90.033305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 06/04/2023]
Abstract
In the present article, we extend and generalize our previous article [H. Safari, M. H. Rahimian, and M. Krafczyk, Phys. Rev. E 88, 013304 (2013)] to include the gradient of the vapor concentration at the liquid-vapor interface as the driving force for vaporization allowing the evaporation from the phase interface to work for arbitrary temperatures. The lattice Boltzmann phase-field multiphase modeling approach with a suitable source term, accounting for the effect of the phase change on the velocity field, is used to solve the two-phase flow field. The modified convective Cahn-Hilliard equation is employed to reconstruct the dynamics of the interface topology. The coupling between the vapor concentration and temperature field at the interface is modeled by the well-known Clausius-Clapeyron correlation. Numerous validation tests including one-dimensional and two-dimensional cases are carried out to demonstrate the consistency of the presented model. Results show that the model is able to predict the flow features around and inside an evaporating droplet quantitatively in quiescent as well as convective environments.
Collapse
Affiliation(s)
- Hesameddin Safari
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Hassan Rahimian
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Manfred Krafczyk
- Institute for Computational Modeling in Civil Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|