1
|
Manivelan SV, Sabarathinam S, Thamilmaran K, Manimehan I. Investigation of transient extreme events in a mutually coupled star network of theoretical Brusselator system. CHAOS (WOODBURY, N.Y.) 2024; 34:091102. [PMID: 39298342 DOI: 10.1063/5.0232021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
In this article, we present evidence of a distinct class of extreme events that occur during the transient chaotic state within network modeling using the Brusselator with a mutually coupled star network. We analyze the phenomenon of transient extreme events in the network by focusing on the lifetimes of chaotic states. These events are identified through the finite-time Lyapunov exponent and quantified using threshold and statistical methods, including the probability distribution function (PDF), generalized extreme value (GEV) distribution, and return period plots. We also evaluate the transitions of these extreme events by examining the average synchronization error and the system's energy function. Our findings, validated across networks of various sizes, demonstrate consistent patterns and behaviors, contributing to a deeper understanding of transient extreme events in complex networks.
Collapse
Affiliation(s)
- S V Manivelan
- Department of Physics, M. R. Government Arts College (Affiliated to Bharathidasan University, Tiruchirappalli), Mannargudi 614 001, Tamilnadu, India
| | - S Sabarathinam
- Laboratory of Complex Systems Modeling and Control, Faculty of Computer Science, National Research University, Higher School of Economics (HSE), Moscow 109028, Russia
| | - K Thamilmaran
- Centre for Computational Modeling, Chennai Institute of Technology, Chennai 600 069, Tamilnadu, India
| | - I Manimehan
- Department of Physics, M. R. Government Arts College (Affiliated to Bharathidasan University, Tiruchirappalli), Mannargudi 614 001, Tamilnadu, India
| |
Collapse
|
2
|
Mishra A, Leo Kingston S, Hens C, Kapitaniak T, Feudel U, Dana SK. Routes to extreme events in dynamical systems: Dynamical and statistical characteristics. CHAOS (WOODBURY, N.Y.) 2020; 30:063114. [PMID: 32611111 DOI: 10.1063/1.5144143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Intermittent large amplitude events are seen in the temporal evolution of a state variable of many dynamical systems. Such intermittent large events suddenly start appearing in dynamical systems at a critical value of a system parameter and continues for a range of parameter values. Three important processes of instabilities, namely, interior crisis, Pomeau-Manneville intermittency, and the breakdown of quasiperiodic motion, are most common as observed in many systems that lead to such occasional and rare transitions to large amplitude spiking events. We characterize these occasional large events as extreme events if they are larger than a statistically defined significant height. We present two exemplary systems, a single system and a coupled system, to illustrate how the instabilities work to originate extreme events and they manifest as non-trivial dynamical events. We illustrate the dynamical and statistical properties of such events.
Collapse
Affiliation(s)
- Arindam Mishra
- Department of Mathematics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - S Leo Kingston
- Division of Dynamics, Lodz University of Technology, 90-924 Lodz, Poland
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, 90-924 Lodz, Poland
| | - Ulrike Feudel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26111 Oldenburg, Germany
| | - Syamal K Dana
- Department of Mathematics, Jadavpur University, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Kumar A, Kulkarni S, Santhanam MS. Extreme events in stochastic transport on networks. CHAOS (WOODBURY, N.Y.) 2020; 30:043111. [PMID: 32357667 DOI: 10.1063/1.5139018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of extreme events on complex networks had focused only on the nodal events. If random walks are used to model the transport process on a network, it is known that degree of the nodes determines the extreme event properties. In contrast, in this work, it is shown that extreme events on the edges display a distinct set of properties from that of the nodes. It is analytically shown that the probability for the occurrence of extreme events on an edge is independent of the degree of the nodes linked by the edge and is dependent only on the total number of edges on the network and the number of walkers on it. Further, it is also demonstrated that non-trivial correlations can exist between the extreme events on the nodes and the edges. These results are in agreement with the numerical simulations on synthetic and real-life networks.
Collapse
Affiliation(s)
- Aanjaneya Kumar
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Suman Kulkarni
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - M S Santhanam
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
4
|
Coghi F, Morand J, Touchette H. Large deviations of random walks on random graphs. Phys Rev E 2019; 99:022137. [PMID: 30934304 DOI: 10.1103/physreve.99.022137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 06/09/2023]
Abstract
We study the rare fluctuations or large deviations of time-integrated functionals or observables of an unbiased random walk evolving on Erdös-Rényi random graphs, and construct a modified, biased random walk that explains how these fluctuations arise in the long-time limit. Two observables are considered: the sum of the degrees visited by the random walk and the sum of their logarithm, related to the trajectory entropy. The modified random walk is used for both quantities to explain how sudden changes in degree fluctuations, similar to dynamical phase transitions, are related to localization transitions. For the second quantity, we also establish links between the large deviations of the trajectory entropy and the maximum entropy random walk.
Collapse
Affiliation(s)
- Francesco Coghi
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Jules Morand
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande C8, 1749-016 Lisboa, Portugal
| | - Hugo Touchette
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa
| |
Collapse
|
5
|
Extreme events in multilayer, interdependent complex networks and control. Sci Rep 2015; 5:17277. [PMID: 26612009 PMCID: PMC4661526 DOI: 10.1038/srep17277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022] Open
Abstract
We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.
Collapse
|
6
|
Abstract
Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.
Collapse
|
7
|
Jalan S, Dwivedi SK. Extreme-value statistics of brain networks: importance of balanced condition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062718. [PMID: 25019825 DOI: 10.1103/physreve.89.062718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Indexed: 06/03/2023]
Abstract
Despite the key role played by inhibitory-excitatory couplings in the functioning of brain networks, the impact of a balanced condition on the stability properties of underlying networks remains largely unknown. We investigate properties of the largest eigenvalues of networks having such couplings, and find that they follow completely different statistics when in the balanced situation. Based on numerical simulations, we demonstrate that the transition from Weibull to Fréchet via the Gumbel distribution can be controlled by the variance of the column sum of the adjacency matrix, which depends monotonically on the denseness of the underlying network. As a balanced condition is imposed, the largest real part of the eigenvalue emulates a transition to the generalized extreme-value statistics, independent of the inhibitory connection probability. Furthermore, the transition to the Weibull statistics and the small-world transition occur at the same rewiring probability, reflecting a more stable system.
Collapse
Affiliation(s)
- Sarika Jalan
- Complex Systems Lab, Indian Institute of Technology Indore, IET-DAVV Campus Khandwa Road, Indore-452017, India
| | - Sanjiv K Dwivedi
- Complex Systems Lab, Indian Institute of Technology Indore, IET-DAVV Campus Khandwa Road, Indore-452017, India
| |
Collapse
|