1
|
Arias-Hernandez LA, Valencia-Ortega G, Martinez-Garcia CR, Angulo-Brown F. Energy conversion theorems for some linear steady states. Phys Rev E 2024; 109:014107. [PMID: 38366493 DOI: 10.1103/physreve.109.014107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/10/2023] [Indexed: 02/18/2024]
Abstract
One of the main issues that real energy converters present, when they produce effective work, is the inevitable entropy production. Within the context of nonequilibrium thermodynamics, entropy production tends to energetically degrade human-made or living systems. On the other hand, it is not useful to think about designing an energy converter that works in the so-called minimum entropy production regime since the effective power output and efficiency are zero. In this paper we establish some energy conversion theorems similar to Prigogine's theorem with constrained forces. The purpose of these theorems is to reveal trade-offs between design and the so-called operation modes for (2×2)-linear isothermal energy converters. The objective functions that give rise to those thermodynamic constraints show stability. A two-mesh electric circuit was built as an example to demonstrate the theorems' validity. Likewise, we reveal a type of energetic hierarchy for power output, efficiency, and dissipation function when the circuit is tuned to any of the operating regimes studied here. These are maximum power output (MPO), maximum efficient power (MPη), maximum omega function (MΩ), maximum ecological function (MEF), maximum efficiency (Mη), and minimum dissipation function (mdf).
Collapse
Affiliation(s)
- L A Arias-Hernandez
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México 07738, México
| | - G Valencia-Ortega
- División de Matemáticas e Ingeniería, Facultad de Estudios Superiores Acatlán, Universidad Nacional Autónoma de México, Santa Cruz Acatlán, Naucalpan de Juárez 53150, México
| | - C R Martinez-Garcia
- Departamento de Ciencias Básicas, Escuela Superior de Cómputo, Instituto Politécnico Nacional, Ciudad de México 07738, México
| | - F Angulo-Brown
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México 07738, México
| |
Collapse
|
2
|
Herbert É, Giraud G, Louis-Napoléon A, Goupil C. Macroeconomic dynamics in a finite world based on thermodynamic potential. Sci Rep 2023; 13:18020. [PMID: 37865677 PMCID: PMC10590417 DOI: 10.1038/s41598-023-44699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
This paper presents a conceptual model describing the medium and long term co-evolution of natural and socio-economic subsystems of Earth. An economy is viewed as an out-of-equilibrium dissipative structure that can only be maintained with a flow of energy and matter. The distinctive approach emphasized here consists in capturing the economic impact of natural ecosystems' depletion by human activities via a pinch of thermodynamic potentials. This viewpoint allows: (i) the full-blown integration of a limited quantity of primary resources into a non-linear macrodynamics that is stock-flow consistent both in terms of matter-energy and economic transactions; (ii) the inclusion of natural and forced recycling; (iii) the inclusion of a friction term which reflects the impossibility to produce (and recycle)goods and services without exuding energy and matter wastes, and (iv) the computation of the anthropically produced entropy as a function of metabolizing intensity and frictions. Analysis and numerical computations confirm the role played by intensity and frictions as key factors for sustainability by contrast with real GDP growth-as well as the interplay between resource scarcity, income inequality, and inflation. A more egalitarian society with moderate inflation turns out to be more sustainable than an unequal society with low inflation. Our approach is flexible enough to allow for various economic models to be embedded into our thermodynamic framework. Finally, we propose the open source ECODYCO software as a first complete realization implementing economic dynamics in a multi-resource environment.
Collapse
Affiliation(s)
- Éric Herbert
- Université Paris Cité, CNRS, UMR 8236-LIED, 75013, Paris, France.
| | - Gaël Giraud
- Environmental Justice Program, McCourt School of Public Policy, Georgetown University, Washington, DC, USA
- Chaire Énergie et Prospérité, Paris, France
| | - Aurélie Louis-Napoléon
- Université Paris Cité, CNRS, UMR 8236-LIED, 75013, Paris, France
- Chaire Énergie et Prospérité, Paris, France
| | | |
Collapse
|
3
|
Gerstenmaier YC. Cyclic heat engines with nonisentropic adiabats and generalization to steady-state devices including thermoelectric converters. Phys Rev E 2022; 105:064136. [PMID: 35854556 DOI: 10.1103/physreve.105.064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/06/2022] [Indexed: 11/07/2022]
Abstract
For heat engines (including refrigerators) the separation of total entropy production in reversible parts ΔS and irreversible contributions has proved to be very useful. The ΔS are entropies for ideal lossless processes at the hot- and cold side and are important system parameters. For Carnot-like heat engines performing finite-time cycles, the concern was raised in a preceding paper that the ΔS are not always independent from irreversibilities, if initial and final working fluid temperatures T_{f}(t) differ in the isothermal transitions. It turns out that the ΔS are unchanged and independent, if T_{f} (t) evolution is optimized for entropy minimization and apparent inconsistencies are cleared up. If nonisentropic transitions in the adiabatic cycle branches are taken into account, the difference of cold- and hot-side entropy reversibilities is equal to the entropy production in the adiabats. Maximization of cooling power is studied for various irreversible entropy models. The concepts are extended to noncyclic steady-state engines. Power maximization and efficiency calculations are performed exactly analytically. This serves as prerequisite for the hitherto unsolved problem of an accurate definition of reversible and irreversible entropy parts in thermoelectric (TE) converters in the case of inhomogeneous three-dimensional material distributions. It is revealed that for nonconstant Seebeck coefficients, additional terms to the Joule heat arise that destroy positive generator performance in the limit of heat conductance k→0, in contrast to the traditional constant material properties model. Thus, the concept of improving TE materials by reducing k is in question and an adapted figure of merit Z is presented to deal with the situation.
Collapse
|
4
|
Kaur J, Johal RS, Feidt M. Thermoelectric generator in endoreversible approximation: The effect of heat-transfer law under finite physical dimensions constraint. Phys Rev E 2022; 105:034122. [PMID: 35428100 DOI: 10.1103/physreve.105.034122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
We revisit the optimal performance of a thermoelectric generator within the endoreversible approximation, while imposing a finite physical dimensions constraint in the form of a fixed total area of the heat exchangers. Our analysis is based on the linear-irreversible law for heat transfer between the reservoir and the working medium, in contrast to Newton's law usually assumed in literature. The optimization of power output is performed with respect to the thermoelectric current as well as the fractional area of the heat exchangers. We describe two alternate designs for allocating optimal areas to the heat exchangers. Interestingly, for each design, the use of linear-irreversible law yields the efficiency at maximum power in the well-known form 2η_{C}^{}/(4-η_{C}^{}), earlier obtained for the case of thermoelectric generator under exoreversible approximation, i.e., assuming only the internal irreversibility due to Joule heating. On the other hand, the use of Newton's law yields Curzon-Ahlborn efficiency.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli P.O. 140306 Punjab, India
| | - Ramandeep S Johal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli P.O. 140306 Punjab, India
| | - Michel Feidt
- Laboratory of Energetics, Theoretical and Applied Mechanics (LEMTA), URA CNRS 7563, University of Lorraine, 54518 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
5
|
Adapted or Adaptable: How to Manage Entropy Production? ENTROPY 2019; 22:e22010029. [PMID: 33285804 PMCID: PMC7516450 DOI: 10.3390/e22010029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022]
Abstract
Adaptable or adapted? Whether it is a question of physical, biological, or even economic systems, this problem arises when all these systems are the location of matter and energy conversion. To this interdisciplinary question, we propose a theoretical framework based on the two principles of thermodynamics. Considering a finite time linear thermodynamic approach, we show that non-equilibrium systems operating in a quasi-static regime are quite deterministic as long as boundary conditions are correctly defined. The Novikov–Curzon–Ahlborn derivation applied to non-endoreversible systems then makes it possible to precisely determine the conditions for obtaining characteristic operating points. As a result, power maximization principle (MPP), entropy minimization principle (mEP), efficiency maximization, or waste minimization states are only specific modalities of system operation. We show that boundary conditions play a major role in defining operating points because they define the intensity of the feedback that ultimately characterizes the operation. Armed with these thermodynamic foundations, we show that the intrinsically most efficient systems are also the most constrained in terms of controlling the entropy and dissipation production. In particular, we show that the best figure of merit necessarily leads to a vanishing production of power. On the other hand, a class of systems emerges, which, although they do not offer extreme efficiency or power, have a wide range of use and therefore marked robustness. It therefore appears that the number of degrees of freedom of the system leads to an optimization of the allocation of entropy production.
Collapse
|
6
|
Liu Q, He J, Ma Y, Wang J. Finite-power performance of quantum heat engines in linear response. Phys Rev E 2019; 100:012105. [PMID: 31499858 DOI: 10.1103/physreve.100.012105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Indexed: 11/07/2022]
Abstract
We investigate the finite-power performance of quantum heat engines working in the linear response regime where the temperature gradient is small. The engine cycles with working substances of ideal harmonic systems consist of two heat transfer and two adiabatic processes, such as the Carnot cycle, Otto cycle, and Brayton cycle. By analyzing the optimal protocol under maximum power we derive the explicitly analytic expression for the irreversible entropy production, which becomes the low dissipation form in the long duration limit. Assuming the engine to be endoreversible, we derive the universal expression for the efficiency at maximum power, which agrees well with that obtained from the phenomenological heat transfer laws holding in the classical thermodynamics. Through appropriate identification of the thermodynamic fluxes and forces that a linear relation connects, we find that the quantum engines under consideration are tightly coupled, and the universality of efficiency at maximum power is confirmed at the linear order in the temperature gradient.
Collapse
Affiliation(s)
- Qin Liu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China.,State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Apertet Y, Ouerdane H, Goupil C, Lecoeur P. True nature of the Curzon-Ahlborn efficiency. Phys Rev E 2017; 96:022119. [PMID: 28950453 DOI: 10.1103/physreve.96.022119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 06/07/2023]
Abstract
The Curzon-Ahlborn efficiency has long served as the definite upper bound for the thermal efficiency at maximum output power, and has thus shaped the development of finite-time thermodynamics. In this paper, we repeal the ruling consensus according to which it has a genuine universal character that can be derived from linear irreversible thermodynamics. We demonstrate that the Curzon-Ahlborn efficiency should instead properly be associated with a particular case of nonlinear heat engines, and we derive a generalized expression for the efficiency at maximum power beyond the restrictive case of linear models.
Collapse
Affiliation(s)
- Y Apertet
- Lycée Jacques Prévert, F-27500 Pont-Audemer, France
| | - H Ouerdane
- Center for Energy Systems, Skolkovo Institute of Science and Technology, 3 Nobel Street, Skolkovo, Moscow Region 143026, Russia
| | - C Goupil
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), CNRS UMR 8236, Université Paris Diderot, 5 Rue Thomas Mann, 75013 Paris, France
| | - Ph Lecoeur
- Institut d'Electronique Fondamentale, Université Paris-Sud, CNRS, UMR 8622, F-91405 Orsay, France
| |
Collapse
|
8
|
Wang H, He J, Wang J. Endoreversible quantum heat engines in the linear response regime. Phys Rev E 2017; 96:012152. [PMID: 29347192 DOI: 10.1103/physreve.96.012152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 06/07/2023]
Abstract
We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.
Collapse
Affiliation(s)
- Honghui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Goupil C, Ouerdane H, Herbert E, Benenti G, D'Angelo Y, Lecoeur P. Closed-loop approach to thermodynamics. Phys Rev E 2016; 94:032136. [PMID: 27739733 DOI: 10.1103/physreve.94.032136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 06/06/2023]
Abstract
We present the closed-loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power P and the conversion efficiency η, to which we add a third one, the working frequency ω. We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process requires only knowing two quantities: the system's feedback factor β and its open-loop gain A_{0}, which product A_{0}β characterizes the interplay between the efficiency, the output power, and the operating rate of the system. By raising the abstract hermodynamic analysis to a higher level, the feedback loop approach provides a versatile and economical, hence fairly efficient, tool for the study of any conversion engine operation for which a feedback factor can be defined.
Collapse
Affiliation(s)
- C Goupil
- Laboratoire Interdisciplinaire des Energies de Demain, LIED/CNRS UMR 8236 Université Paris Diderot, Bât. Lamarck B 35 rue Hélène Brion 75013 Paris, France
| | - H Ouerdane
- Russian Quantum Center, 100 Novaya Street, Skolkovo, Moscow Region 143025, Russia
- UFR Langues Vivantes Etrangères, Université de Caen Normandie, Esplanade de la Paix 14032 Caen, France
| | - E Herbert
- Laboratoire Interdisciplinaire des Energies de Demain, LIED/CNRS UMR 8236 Université Paris Diderot, Bât. Lamarck B 35 rue Hélène Brion 75013 Paris, France
| | - G Benenti
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan, Italy
| | - Y D'Angelo
- Laboratoire Interdisciplinaire des Energies de Demain, LIED/CNRS UMR 8236 Université Paris Diderot, Bât. Lamarck B 35 rue Hélène Brion 75013 Paris, France
- Laboratory of Mathematics J.A. Dieudonné, CNRS UMR 7351 University of Nice-Sophia Antipolis Parc Valrose, Nice, France
| | - Ph Lecoeur
- Institut d'Electronique Fondamentale, Université Paris Sud CNRS, 91405 Orsay, France, CNRS, UMR 8622, 91405 Orsay, France
| |
Collapse
|
10
|
Wang J, Ye Z, Lai Y, Li W, He J. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062134. [PMID: 26172688 DOI: 10.1103/physreve.91.062134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 06/04/2023]
Abstract
We propose and theoretically investigate a system of two coupled harmonic oscillators as a heat engine. We show how these two coupled oscillators within undamped regime can be controlled to realize an Otto cycle that consists of two adiabatic and two isochoric processes. During the two isochores the harmonic system is embedded in two heat reservoirs at constant temperatures T(h) and T(c)(<T(h)), respectively, and it is tuned slowly along a protocol to realize an adiabatic process. To illustrate the performance in finite time of the quantum heat engine, we adopt the semigroup approach to model the thermal relaxation dynamics along the two isochoric processes, and we find the upper bound of efficiency at maximum power (EMP) η* to be a function of the Carnot efficiency η(C)(=1-T(c)/T(h)): η*≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))], identical to those previously derived from ideal (noninteracting) microscopic, mesoscopic, and macroscopic systems.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuolin Ye
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yiming Lai
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Weisheng Li
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| |
Collapse
|
11
|
Izumida Y, Okuda K, Roco JMM, Hernández AC. Heat devices in nonlinear irreversible thermodynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052140. [PMID: 26066152 DOI: 10.1103/physreve.91.052140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 06/04/2023]
Abstract
We present results obtained by using nonlinear irreversible models for heat devices. In particular, we focus on the global performance characteristics, the maximum efficiency and the efficiency at maximum power regimes for heat engines, and the maximum coefficient of performance (COP) and the COP at maximum cooling power regimes for refrigerators. We analyze the key role played by the interplay between irreversibilities coming from heat leaks and internal dissipations. We also discuss the relationship between these results and those obtained by different models.
Collapse
Affiliation(s)
- Y Izumida
- Department of Information Sciences, Ochanomizu University 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8620, Japan
| | - K Okuda
- Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - J M M Roco
- Departamento de Física Aplicada, and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| | - A Calvo Hernández
- Departamento de Física Aplicada, and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
12
|
Sheng S, Tu ZC. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022136. [PMID: 25768487 DOI: 10.1103/physreve.91.022136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Indexed: 06/04/2023]
Abstract
We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible thermodynamics. For tight-coupling heat engines, a generic constitutive relation for nonlinear response accurate up to the quadratic order is derived from the stalling condition and the symmetry argument. By applying this generic nonlinear constitutive relation to finite-time thermodynamics, we obtain the necessary and sufficient condition for the universality of efficiency at maximum power, which states that a tight-coupling heat engine takes the universal efficiency at maximum power up to the quadratic order if and only if either the engine symmetrically interacts with two heat reservoirs or the elementary thermal energy flowing through the engine matches the characteristic energy of the engine. Hence we solve the following paradox: On the one hand, the quadratic term in the universal efficiency at maximum power for tight-coupling heat engines turned out to be a consequence of symmetry [Esposito, Lindenberg, and Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009); Sheng and Tu, Phys. Rev. E 89, 012129 (2014)]; On the other hand, typical heat engines such as the Curzon-Ahlborn endoreversible heat engine [Curzon and Ahlborn, Am. J. Phys. 43, 22 (1975)] and the Feynman ratchet [Tu, J. Phys. A 41, 312003 (2008)] recover the universal efficiency at maximum power regardless of any symmetry.
Collapse
Affiliation(s)
- Shiqi Sheng
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Z C Tu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Apertet Y, Ouerdane H, Goupil C, Lecoeur P. Revisiting Feynman's ratchet with thermoelectric transport theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012113. [PMID: 25122257 DOI: 10.1103/physreve.90.012113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 06/03/2023]
Abstract
We show how the formalism used for thermoelectric transport may be adapted to Smoluchowski's seminal thought experiment, also known as Feynman's ratchet and pawl system. Our analysis rests on the notion of useful flux, which for a thermoelectric system is the electrical current and for Feynman's ratchet is the effective jump frequency. Our approach yields original insight into the derivation and analysis of the system's properties. In particular we define an entropy per tooth in analogy with the entropy per carrier or Seebeck coefficient, and we derive the analog to Kelvin's second relation for Feynman's ratchet. Owing to the formal similarity between the heat fluxes balance equations for a thermoelectric generator (TEG) and those for Feynman's ratchet, we introduce a distribution parameter γ that quantifies the amount of heat that flows through the cold and hot sides of both heat engines. While it is well established that γ = 1/2 for a TEG, it is equal to 1 for Feynman's ratchet. This implies that no heat may be rejected in the cold reservoir for the latter case. Further, the analysis of the efficiency at maximum power shows that the so-called Feynman efficiency corresponds to that of an exoreversible engine, with γ = 1. Then, turning to the nonlinear regime, we generalize the approach based on the convection picture and introduce two different types of resistance to distinguish the dynamical behavior of the considered system from its ability to dissipate energy. We finally put forth the strong similarity between the original Feynman ratchet and a mesoscopic thermoelectric generator with a single conducting channel.
Collapse
Affiliation(s)
- Y Apertet
- Institut d'Electronique Fondamentale, Université Paris-Sud, CNRS, UMR 8622, F-91405 Orsay, France and Lycée Jacques Prévert, F-27500 Pont-Audemer, France
| | - H Ouerdane
- Russian Quantum Center, 100 Novaya Street, Skolkovo, Moscow Region 143025, Russia and Laboratoire Interdisciplinaire des Energies de Demain (LIED), CNRS UMR 8236, Université Paris Diderot, 5 Rue Thomas Mann, 75013 Paris, France
| | - C Goupil
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), CNRS UMR 8236, Université Paris Diderot, 5 Rue Thomas Mann, 75013 Paris, France
| | - Ph Lecoeur
- Institut d'Electronique Fondamentale, Université Paris-Sud, CNRS, UMR 8622, F-91405 Orsay, France
| |
Collapse
|
14
|
Entin-Wohlman O, Jiang JH, Imry Y. Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012123. [PMID: 24580188 DOI: 10.1103/physreve.89.012123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Indexed: 06/03/2023]
Abstract
The efficiency and cooling power of a two-terminal thermoelectric refrigerator are analyzed near the limit of vanishing dissipation (ideal system), where the optimal efficiency is the Carnot one, but the cooling power vanishes. This limit, where transport occurs only via a single sharp electronic energy, has been referred to as "strong coupling" or "the best thermoelectric." Confining the discussion to the linear-response regime, it is found that "parasitic" effects that make the system deviate from the ideal limit, and reduce the efficiency from the Carnot limit, are crucial for the usefulness of the device. Among these parasitics, there are: parallel phonon conduction, finite width of the electrons' transport band, and more than a single energy transport channel. In terms of a small parameter characterizing the deviation from the ideal limit, the efficiency and power grow linearly, and the dissipation quadratically. The results are generalized to the case of broken time-reversal symmetry, and the major nontrivial changes are discussed. Finally, the recent universal relation between the thermopower and the asymmetry of the dissipation between the two terminals is briefly discussed, including the small dissipation limit.
Collapse
Affiliation(s)
- O Entin-Wohlman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel and Department of Physics and the Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel
| | - J-H Jiang
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Y Imry
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Sheng S, Tu ZC. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012129. [PMID: 24580194 DOI: 10.1103/physreve.89.012129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 06/03/2023]
Abstract
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
Collapse
Affiliation(s)
- Shiqi Sheng
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Z C Tu
- Department of Physics, Beijing Normal University, Beijing 100875, China and Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, China
| |
Collapse
|