1
|
Bezhenar MV, Elkina AA, Caceres JLH, Baryshev MG, Sulima AO, Dzhimak SS, Isaev VA. Review of Mathematical Models Describing the Mechanical Motion in a DNA Molecule. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922060021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
2
|
Prokhorov VV, Barinov NA, Prusakov KA, Dubrovin EV, Frank-Kamenetskii MD, Klinov DV. Anomalous Laterally Stressed Kinetically Trapped DNA Surface Conformations. NANO-MICRO LETTERS 2021; 13:130. [PMID: 34138333 PMCID: PMC8141082 DOI: 10.1007/s40820-021-00626-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
DNA kinking is inevitable for the highly anisotropic 1D-1D electrostatic interaction with the one-dimensionally periodically charged surface. The double helical structure of the DNA kinetically trapped on positively charged monomolecular films comprising the lamellar templates is strongly laterally stressed and extremely perturbed at the nanometer scale. The DNA kinetic trapping is not a smooth 3D-> 2D conformational flattening but is a complex nonlinear in-plane mechanical response (bending, tensile and unzipping) driven by the physics beyond the scope of the applicability of the linear worm-like chain approximation. Up to now, the DNA molecule adsorbed on a surface was believed to always preserve its native structure. This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated. High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled. We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress (> 30 pNnm) inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges. In addition, the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity. The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending. The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics. The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear. The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.
Collapse
Affiliation(s)
- Valery V Prokhorov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation.
- A.N.Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky prospect 31, Moscow, 199071, Russian Federation.
| | - Nikolay A Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation
| | - Kirill A Prusakov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, 141700, Moscow, Russian Federation
| | - Evgeniy V Dubrovin
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation
- Lomonosov Moscow State University, Leninskie gory, 1-2, Moscow, 119991, Russian Federation
| | | | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation.
- Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, 141700, Moscow, Russian Federation.
| |
Collapse
|
3
|
Sadoon AA, Khadka P, Freeland J, Gundampati RK, Manso RH, Ruiz M, Krishnamurthi VR, Thallapuranam SK, Chen J, Wang Y. Silver Ions Caused Faster Diffusive Dynamics of Histone-Like Nucleoid-Structuring Proteins in Live Bacteria. Appl Environ Microbiol 2020; 86:e02479-19. [PMID: 31953329 PMCID: PMC7054089 DOI: 10.1128/aem.02479-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The antimicrobial activity and mechanism of silver ions (Ag+) have gained broad attention in recent years. However, dynamic studies are rare in this field. Here, we report our measurement of the effects of Ag+ ions on the dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy (sptPALM). It was found that treating the bacteria with Ag+ ions led to faster diffusive dynamics of H-NS proteins. Several techniques were used to understand the mechanism of the observed faster dynamics. Electrophoretic mobility shift assay on purified H-NS proteins indicated that Ag+ ions weaken the binding between H-NS proteins and DNA. Isothermal titration calorimetry confirmed that DNA and Ag+ ions interact directly. Our recently developed sensing method based on bent DNA suggested that Ag+ ions caused dehybridization of double-stranded DNA (i.e., dissociation into single strands). These evidences led us to a plausible mechanism for the observed faster dynamics of H-NS proteins in live bacteria when subjected to Ag+ ions: Ag+-induced DNA dehybridization weakens the binding between H-NS proteins and DNA. This work highlighted the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.IMPORTANCE As so-called "superbug" bacteria resistant to commonly prescribed antibiotics have become a global threat to public health in recent years, noble metals, such as silver, in various forms have been attracting broad attention due to their antimicrobial activities. However, most of the studies in the existing literature have relied on the traditional bioassays for studying the antimicrobial mechanism of silver; in addition, temporal resolution is largely missing for understanding the effects of silver on the molecular dynamics inside bacteria. Here, we report our study of the antimicrobial effect of silver ions at the nanoscale on the diffusive dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy. This work highlights the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.
Collapse
Affiliation(s)
- Asmaa A Sadoon
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Physics, University of Thi Qar, Thi Qar, Iraq
| | - Prabhat Khadka
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jack Freeland
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ryan H Manso
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Mason Ruiz
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | | | | | - Jingyi Chen
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Tee S, Wang Z. How Well Can DNA Rupture DNA? Shearing and Unzipping Forces inside DNA Nanostructures. ACS OMEGA 2018; 3:292-301. [PMID: 30023776 PMCID: PMC6044922 DOI: 10.1021/acsomega.7b01692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/26/2017] [Indexed: 05/26/2023]
Abstract
A purely DNA nanomachine must support internal stresses across short DNA segments with finite rigidity, producing effects that can be qualitatively very different from experimental observations of isolated DNA in fixed-force ensembles. In this article, computational simulations are used to study how well the rigidity of a driving DNA duplex can rupture a double-stranded DNA target into single-stranded segments and how well this stress can discriminate between unzipping or shearing geometries. This discrimination is found to be maximized at an optimal length but deteriorates as the driving duplex is either lengthened or shortened. This differs markedly from a fixed-force ensemble and has implications for the design parameters and limitations of dynamic DNA nanomachines.
Collapse
|
5
|
Abstract
The treatment of bending and buckling of stiff biopolymer filaments by the popular worm-like chain model does not provide adequate understanding of these processes at the microscopic level. Thus, we have used the atomistic molecular-dynamic simulations and the Amber03 force field to examine the compression buckling of α-helix (AH) filaments at room temperature. It was found that the buckling instability occurs in AHs at the critical force f(c) in the range of tens of pN depending on the AH length. The decrease of the force f(c) with the contour length follows the prediction of the classic thin rod theory. At the force f(c) the helical filament undergoes the swift and irreversible transition from the smoothly bent structure to the buckled one. A sharp kink in the AH contour arises at the transition, accompanied by the disruption of the hydrogen bonds in its vicinity. The kink defect brings in an effective softening of the AH molecule at buckling. Nonbonded interactions between helical branches drive the rearrangement of a kinked AH into the ultimate buckled structure of a compact helical hairpin described earlier in the literature.
Collapse
Affiliation(s)
- Peter Palenčár
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Tomáš Bleha
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| |
Collapse
|
7
|
Abstract
Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼60 bp to ∼100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA.
Collapse
Affiliation(s)
- Tung T Le
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA
| |
Collapse
|