1
|
Zheng SF, Wu ZY, Gao YY, Yang YR, Wang XD, Gross U. Asymmetric Condensation Characteristics during Dropwise Condensation in the Presence of Non-condensable Gas: A Lattice Boltzmann Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9760-9776. [PMID: 35917451 DOI: 10.1021/acs.langmuir.2c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, the condensation characteristics of droplets considering the non-condensable gas with different interaction effects are numerically studied utilizing a multicomponent multiphase thermal lattice Boltzmann (LB) model, with a special focus on the asymmetric nature induced by the interaction effect. The results demonstrate that for isolated-like growth with negligible interactions, the condensation characteristics, that is, the concentration profile, the temperature distribution, and the flow pattern, are typically symmetric in nature. For the growth regime in a pattern, the droplet has to compete with its neighbors for catching vapor, which leads to an overlapping concentration profile (namely the interaction effect). The distribution of the condensation flux on the droplet surface is consequently modified, which contributes to the asymmetric flow pattern and temperature profile. The condensation characteristics for droplet growth in a pattern present an asymmetric nature. Significantly, the asymmetric condensation flux resulting from the interaction effect can induce droplet motion. The results further demonstrate that the interaction strongly depends on the droplet's spatial and size distribution, including two crucial parameters, namely the inter-distance and relative size of droplets. The asymmetric condensation characteristics are consequently dependent on the difference in the interaction intensities on both sides of the droplet. Finally, we demonstrate numerically and theoretically that the evolution of the droplet radius versus time can be suitably described by a power law; the corresponding exponent is kept at a constant of 0.50 for isolated-like growth and is strongly sensitive to the interaction effect for the growth in a pattern.
Collapse
Affiliation(s)
- Shao-Fei Zheng
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Zi-Yi Wu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Yi-Ying Gao
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Yan-Ru Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Xiao-Dong Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
| | - Ulrich Gross
- Institute of Thermal Engineering, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 7, 09599 Freiberg, Germany
| |
Collapse
|
2
|
Li Q, Yu Y, Luo KH. Improved three-dimensional thermal multiphase lattice Boltzmann model for liquid-vapor phase change. Phys Rev E 2022; 105:025308. [PMID: 35291096 DOI: 10.1103/physreve.105.025308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Modeling liquid-vapor phase change using the lattice Boltzmann (LB) method has attracted significant attention in recent years. In this paper, we propose an improved three-dimensional thermal multiphase LB model for simulating liquid-vapor phase change. The proposed model has the following features. First, it is still within the framework of the thermal LB method using a temperature distribution function and therefore retains the fundamental advantages of the thermal LB method. Second, in the existing thermal LB models for liquid-vapor phase change, the finite-difference computations of the gradient terms ∇·u and ∇T usually require special treatment at boundary nodes, while in the proposed thermal LB model these two terms are calculated locally. Moreover, in some of the existing thermal LB models, the error term ∂_{t_{0}}(Tu) is eliminated by adding local correction terms to the collision process in the moment space, which causes these thermal LB models to be limited to the D2Q9 lattice in two dimensions and the D3Q15 or D3Q19 lattice in three dimensions. Conversely, the proposed model does not suffer from such an error term and therefore the thermal LB equation can be constructed on the D3Q7 lattice, which simplifies the model and improves the computational efficiency. Numerical simulations are carried out to validate the accuracy and efficiency of the proposed thermal multiphase LB model for simulating liquid-vapor phase change.
Collapse
Affiliation(s)
- Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Y Yu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
3
|
Kinetic Simulations of Compressible Non-Ideal Fluids: From Supercritical Flows to Phase-Change and Exotic Behavior. COMPUTATION 2021. [DOI: 10.3390/computation9020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigate a kinetic model for compressible non-ideal fluids. The model imposes the local thermodynamic pressure through a rescaling of the particle’s velocities, which accounts for both long- and short-range effects and hence full thermodynamic consistency. The model is fully Galilean invariant and treats mass, momentum, and energy as local conservation laws. The analysis and derivation of the hydrodynamic limit is followed by the assessment of accuracy and robustness through benchmark simulations ranging from the Joule–Thompson effect to a phase-change and high-speed flows. In particular, we show the direct simulation of the inversion line of a van der Waals gas followed by simulations of phase-change such as the one-dimensional evaporation of a saturated liquid, nucleate, and film boiling and eventually, we investigate the stability of a perturbed strong shock front in two different fluid mediums. In all of the cases, we find excellent agreement with the corresponding theoretical analysis and experimental correlations. We show that our model can operate in the entire phase diagram, including super- as well as sub-critical regimes and inherently captures phase-change phenomena.
Collapse
|
4
|
Mukherjee S, Berghout P, Van den Akker HE. A lattice boltzmann approach to surfactant-laden emulsions. AIChE J 2018. [DOI: 10.1002/aic.16451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Siddhartha Mukherjee
- Dept. of Chemical Engineering, Faculty of Applied Sciences Section of Transport Phenomena, Delft University of Technology; 2629 HZ, Delft The Netherlands
| | - Pieter Berghout
- Dept. of Mechanical, Aeronautical and Biomedical Engineering, Faculty of Science and Engineering, Bernal Institute; School of Engineering, University of Limerick Limerick; Ireland
| | - Harry E.A. Van den Akker
- Dept. of Chemical Engineering, Faculty of Applied Sciences Section of Transport Phenomena, Delft University of Technology; 2629 HZ, Delft The Netherlands
- Dept. of Mechanical, Aeronautical and Biomedical Engineering, Faculty of Science and Engineering, Bernal Institute; School of Engineering, University of Limerick Limerick; Ireland
| |
Collapse
|
5
|
|
6
|
Li Q, Zhou P, Yan HJ. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change. Phys Rev E 2017; 96:063303. [PMID: 29347407 DOI: 10.1103/physreve.96.063303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Indexed: 06/07/2023]
Abstract
In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012)10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇·(λ∇T)/∇·(λ∇T)ρc_{V}ρc_{V} with ∇·(χ∇T) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂_{t_{0}}(Tv)+∇·(Tvv), which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇·(λ∇T)/∇·(λ∇T)ρc_{V}ρc_{V} with ∇·(χ∇T) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.
Collapse
Affiliation(s)
- Qing Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - P Zhou
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - H J Yan
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Zarghami A, Van den Akker HEA. Thermohydrodynamics of an evaporating droplet studied using a multiphase lattice Boltzmann method. Phys Rev E 2017; 95:043310. [PMID: 28505732 DOI: 10.1103/physreve.95.043310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/07/2022]
Abstract
In this paper, the thermohydrodynamics of an evaporating droplet is investigated by using a single-component pseudopotential lattice Boltzmann model. The phase change is applied to the model by adding source terms to the thermal lattice Boltzmann equation in such a way that the macroscopic energy equation of multiphase flows is recovered. In order to gain an exhaustive understanding of the complex hydrodynamics during evaporation, a single droplet is selected as a case study. At first, some tests for a stationary (non-)evaporating droplet are carried out to validate the method. Then the model is used to study the thermohydrodynamics of a falling evaporating droplet. The results show that the model is capable of reproducing the flow dynamics and transport phenomena of a stationary evaporating droplet quite well. Of course, a moving droplet evaporates faster than a stationary one due to the convective transport. Our study shows that our single-component model for simulating a moving evaporating droplet is limited to low Reynolds numbers.
Collapse
Affiliation(s)
- Ahad Zarghami
- Department of Process and Energy, TU Delft, Netherlands
| | - Harry E A Van den Akker
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, Netherlands.,Bernal Institute, School of Engineering, University of Limerick, Ireland
| |
Collapse
|
8
|
Zarghami A, Looije N, Van den Akker H. Assessment of interaction potential in simulating nonisothermal multiphase systems by means of lattice Boltzmann modeling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:023307. [PMID: 26382546 DOI: 10.1103/physreve.92.023307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 06/05/2023]
Abstract
The pseudopotential lattice Boltzmann model (PP-LBM) is a very popular model for simulating multiphase systems. In this model, phase separation occurs via a short-range attraction between different phases when the interaction potential term is properly chosen. Therefore, the potential term is expected to play a significant role in the model and to affect the accuracy and the stability of the computations. The original PP-LBM suffers from some drawbacks such as being capable of dealing with low density ratios only, thermodynamic inconsistency, and spurious velocities. In this paper, we aim to analyze the PP-LBM with the view to simulate single-component (non-)isothermal multiphase systems at large density ratios and in spite of the presence of spurious velocities. For this purpose, the performance of two popular potential terms and of various implementation schemes for these potential terms is examined. Furthermore, the effects of different parameters (i.e., equation of state, viscosity, etc.) on the simulations are evaluated, and, finally, recommendations for a proper simulation of (non-)isothermal multiphase systems are presented.
Collapse
Affiliation(s)
- Ahad Zarghami
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, The Netherlands
| | - Niels Looije
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, The Netherlands
| | - Harry Van den Akker
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, The Netherlands
| |
Collapse
|
9
|
|
10
|
Sigalotti LDG, Troconis J, Sira E, Peña-Polo F, Klapp J. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:013021. [PMID: 26274283 DOI: 10.1103/physreve.92.013021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 06/04/2023]
Abstract
The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.
Collapse
Affiliation(s)
- Leonardo Di G Sigalotti
- Área de Física de Procesos Irreversibles, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 180, 02200 México D.F., Mexico and Centro de Física, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado Postal 20632, Caracas 1020-A, Venezuela
| | - Jorge Troconis
- Centro de Física, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado Postal 20632, Caracas 1020-A, Venezuela
| | - Eloy Sira
- Centro de Física, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado Postal 20632, Caracas 1020-A, Venezuela
| | - Franklin Peña-Polo
- Centro de Física, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado Postal 20632, Caracas 1020-A, Venezuela
| | - Jaime Klapp
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, ININ, Km. 36.5, Carretera México-Toluca, 52750 La Marquesa, Estado de México, Mexico and Departamento de Matemáticas, Cinvestav del Instituto Politécnico Nacional (I.P.N.), 07360 México D.F., Mexico
| |
Collapse
|
11
|
Albernaz D, Do-Quang M, Amberg G. Multirelaxation-time lattice Boltzmann model for droplet heating and evaporation under forced convection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:043012. [PMID: 25974585 DOI: 10.1103/physreve.91.043012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 06/04/2023]
Abstract
We investigate the evaporation of a droplet surrounded by superheated vapor with relative motion between phases. The evaporating droplet is a challenging process, as one must take into account the transport of mass, momentum, and heat. Here a lattice Boltzmann method is employed where phase change is controlled by a nonideal equation of state. First, numerical simulations are compared to the D(2) law for a vaporizing static droplet and good agreement is observed. Results are then presented for a droplet in a Lagrangian frame under a superheated vapor flow. Evaporation is described in terms of the temperature difference between liquid-vapor and the inertial forces. The internal liquid circulation driven by surface-shear stresses due to convection enhances the evaporation rate. Numerical simulations demonstrate that for higher Reynolds numbers, the dynamics of vaporization flux can be significantly affected, which may cause an oscillatory behavior on the droplet evaporation. The droplet-wake interaction and local mass flux are discussed in detail.
Collapse
Affiliation(s)
- Daniel Albernaz
- Linné Flow Center, Department of Mechanics, The Royal Institute of Technology, Stockholm, Sweden
| | - Minh Do-Quang
- Linné Flow Center, Department of Mechanics, The Royal Institute of Technology, Stockholm, Sweden
| | - Gustav Amberg
- Linné Flow Center, Department of Mechanics, The Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
12
|
Li Q, Luo KH. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:053022. [PMID: 25353895 DOI: 10.1103/physreve.89.053022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Indexed: 06/04/2023]
Abstract
The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and constructed within the framework of the double-distribution-function LB method, were proposed to simulate thermal multiphase flows [G. Házi and A. Márkus, Phys. Rev. E 77, 026305 (2008); L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012); S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012); M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013)]. The objective of the present paper is to show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the pseudopotential LB modeling of thermal flows.
Collapse
Affiliation(s)
- Qing Li
- Energy Technology Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - K H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|