1
|
Das R, Kirkpatrick TR, Thirumalai D. Collective dynamic length increases monotonically in pinned and unpinned glass forming systems. J Chem Phys 2025; 162:054504. [PMID: 39902698 DOI: 10.1063/5.0241501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
The Random First-Order Transition (RFOT) theory predicts that transport proceeds by the cooperative movement of particles in domains, whose sizes increase as a liquid is compressed above a characteristic volume fraction, ϕd. The rounded dynamical transition around ϕd, which signals a crossover to activated transport, is accompanied by a growing correlation length that is predicted to diverge at the thermodynamic glass transition density (>ϕd). Simulations and imaging experiments probed the single particle dynamics of mobile particles in response to pinning all the particles in a semi-infinite space or randomly pinning (RP) a fraction of particles in a liquid at equilibrium. The extracted dynamic length increases non-monotonically with a peak around ϕd, which not only depends on the pinning method but is also different from ϕd of the actual liquid. This finding is at variance with the results obtained using the small wavelength limit of a four-point structure factor for unpinned systems. To obtain a consistent picture of the growth of the dynamic length, one that is impervious to the use of RP, we introduce a multiparticle structure factor, Smpc(q,t), that probes collective dynamics. The collective dynamical length, calculated from the small wave vector limit of Smpc(q,t), increases monotonically as a function of the volume fraction in a glass-forming binary mixture of charged colloidal particles in both unpinned and pinned systems. This prediction, which also holds in the presence of added monovalent salt, may be validated using imaging experiments.
Collapse
Affiliation(s)
- Rajsekhar Das
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - T R Kirkpatrick
- Institute for Physical Science and Technology, The University of Maryland, College Park, Maryland 20742, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
2
|
Sinha S, Malmi-Kakkada AN, Li X, Samanta HS, Thirumalai D. Spatially heterogeneous dynamics of cells in a growing tumor spheroid: comparison between theory and experiments. SOFT MATTER 2020; 16:5294-5304. [PMID: 32462163 DOI: 10.1039/c9sm02277e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Collective cell movement, characterized by multiple cells that are in contact for substantial periods of time and undergo correlated motion, plays a central role in cancer and embryogenesis. Recent imaging experiments have provided time-dependent traces of individual cells, thus providing an unprecedented picture of tumor spheroid growth. By using simulations of a minimal cell model, we analyze the experimental data that map the movement of cells in a fibrosarcoma tumor spheroid embedded in a collagen matrix. Both simulations and experiments show that cells in the core of the spheroid exhibit subdiffusive glassy dynamics (mean square displacement, Δ(t) ≈ tα with α < 1), whereas cells in the periphery exhibit superdiffusive motion, Δ(t) ≈ tα with α > 1. The motion of most of the cells near the periphery is highly persistent and correlated directional motion due to cell doubling and apoptosis rates, thus explaining the observed superdiffusive behavior. The α values for cells in the core and periphery, extracted from simulations and experiments, are in near quantitative agreement with each other, which is surprising given that no parameter in the model was used to fit the measurements. The qualitatively different dynamics of cells in the core and periphery is captured by the fourth order susceptibility, introduced to characterize metastable states in glass forming systems. Analyses of the velocity autocorrelation of individual cells show remarkable spatial heterogeneity with no two cells exhibiting similar behavior. The prediction that α should depend on the location of the cells in the tumor is amenable to experimental testing. The highly heterogeneous dynamics of cells in the tumor spheroid provides a plausible mechanism for the origin of intratumor heterogeneity.
Collapse
Affiliation(s)
- Sumit Sinha
- Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Xin Li
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Himadri S Samanta
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Cho HW, Mugnai ML, Kirkpatrick TR, Thirumalai D. Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses. Phys Rev E 2020; 101:032605. [PMID: 32290023 DOI: 10.1103/physreve.101.032605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Colloidal particles, which are ubiquitous, have become ideal testing grounds for the structural glass transition theories. In these systems glassy behavior arises as the density of the particles is increased. Thus, soft colloidal particles with varying degree of softness capture diverse glass-forming properties, observed normally in molecular glasses. Brownian dynamics simulations for a binary mixture of micron-sized charged colloidal suspensions show that tuning the softness of the interaction potential, achievable by changing the monovalent salt concentration results in a continuous transition from fragile to strong behavior. Remarkably, this is found in a system where the well characterized interaction potential between the colloidal particles is isotropic. We also show that the predictions of the random first-order transition (RFOT) theory quantitatively describes the universal features such as the growing correlation length, ξ∼(ϕ_{K}/ϕ-1)^{-ν} with ν=2/3 where ϕ_{K}, the analog of the Kauzmann temperature, depends on the salt concentration. As anticipated by the RFOT predictions, we establish a causal relationship between the growing correlation length and a steep increase in the relaxation time and dynamic heterogeneity as the system is compressed. The broad range of fragility observed in Wigner glasses is used to draw analogies with molecular and polymer glasses. The large variations in the fragility are normally found only when the temperature dependence of the viscosity is examined for a large class of diverse glass-forming materials. In sharp contrast, this is vividly illustrated in a single system that can be experimentally probed. Our work also shows that the RFOT predictions are accurate in describing the dynamics over the entire density range, regardless of the fragility of the glasses.
Collapse
Affiliation(s)
- Hyun Woo Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mauro L Mugnai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - T R Kirkpatrick
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
4
|
Wang X, Xu WS, Zhang H, Douglas JF. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids. J Chem Phys 2019; 151:184503. [PMID: 31731847 DOI: 10.1063/1.5125641] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glass-formation is a ubiquitous phenomenon that is often observed in a broad class of materials ranging from biological matter to commonly encountered synthetic polymer, as well as metallic and inorganic glass-forming (GF) materials. Despite the many regularities in the dynamical properties of GF materials, the structural origin of the universal dynamical properties of these materials has not yet been identified. Recent simulations of coarse-grained polymeric GF liquids have indicated the coexistence of clusters of mobile and immobile particles that appear to be directly linked, respectively, to the rate of molecular diffusion and structural relaxation. The present work examines the extent to which these distinct types of "dynamic heterogeneity" (DH) arise in metallic GF liquids (Cu-Zr, Ni-Nb, and Pd-Si alloys) having a vastly different molecular structure and chemistry. We first identified mobile and immobile particles and their transient clusters and found the DH in the metallic alloys to be remarkably similar in form to polymeric GF liquids, confirming the "universality" of the DH phenomenon. Furthermore, the lifetime of the mobile particle clusters was found to be directly related to the rate of diffusion in these materials, while the lifetime of immobile particles was found to be proportional to the structural relaxation time, providing some insight into the origin of decoupling in GF liquids. An examination of particles having a locally preferred atomic packing, and clusters of such particles, suggests that there is no one-to-one relation between these populations of particles so that an understanding of the origin of DH in terms of static fluid structure remains elusive.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F Douglas
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
5
|
Kang H, Luan B, Zhou R. Glassy dynamics in mutant huntingtin proteins. J Chem Phys 2018; 149:072333. [DOI: 10.1063/1.5029369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hongsuk Kang
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Ruhong Zhou
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
6
|
Niu R, Heidt S, Sreij R, Dekker RI, Hofmann M, Palberg T. Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. Sci Rep 2017; 7:17044. [PMID: 29213089 PMCID: PMC5719089 DOI: 10.1038/s41598-017-17106-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Colloidal glasses formed from hard spheres, nearly hard spheres, ellipsoids and platelets or their attractive variants, have been studied in great detail. Complementing and constraining theoretical approaches and simulations, the many different types of model systems have significantly advanced our understanding of the glass transition in general. Despite their early prediction, however, no experimental charged sphere glasses have been found at low density, where the competing process of crystallization prevails. We here report the formation of a transient amorphous solid formed from charged polymer spheres suspended in thoroughly deionized water at volume fractions of 0.0002-0.01. From optical experiments, we observe the presence of short-range order and an enhanced shear rigidity as compared to the stable polycrystalline solid of body centred cubic structure. On a density dependent time scale of hours to days, the amorphous solid transforms into this stable structure. We further present preliminary dynamic light scattering data showing the evolution of a second slow relaxation process possibly pointing to a dynamic heterogeneity known from other colloidal glasses and gels. We compare our findings to the predicted phase behaviour of charged sphere suspensions and discuss possible mechanisms for the formation of this peculiar type of colloidal glass.
Collapse
Affiliation(s)
- Ran Niu
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany.
| | - Sabrina Heidt
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, D-55128, Mainz, Germany
| | - Ramsia Sreij
- Department of Chemistry Physical and Biophysical Chemistry (PC III), Bielefeld University, D-33615, Bielefeld, Germany
| | - Riande I Dekker
- Debye Institute for Nanomaterials Science, Utrecht University, NL-3584 CC, Utrecht, The Netherlands
| | - Maximilian Hofmann
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
| | - Thomas Palberg
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
| |
Collapse
|
7
|
Kang H, Yoon YG, Thirumalai D, Hyeon C. Confinement-Induced Glassy Dynamics in a Model for Chromosome Organization. PHYSICAL REVIEW LETTERS 2015; 115:198102. [PMID: 26588418 DOI: 10.1103/physrevlett.115.198102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 06/05/2023]
Abstract
Recent experiments showing scaling of the intrachromosomal contact probability, P(s)∼s(-1) with the genomic distance s, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of P(s) varies across organisms, requiring an explanation. We illustrate dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosomes inside a nucleus as a homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction (ϕ) inside the confinement approaches a critical value ϕ(c). The universal value of ϕ(c)(∞)≈0.44 for a sufficiently long polymer (N≫1) allows us to discuss genome dynamics using ϕ as the sole parameter. Our study shows that the onset of glassy dynamics is the reason for the segregated chromosome organization in humans (N≈3×10(9), ϕ≳ϕ(c)(∞)), whereas chromosomes of budding yeast (N≈10(8), ϕ<ϕ(c)(∞)) are equilibrated with no clear signature of such organization.
Collapse
Affiliation(s)
- Hongsuk Kang
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Young-Gui Yoon
- Department of Physics, Chung-Ang University, Seoul 156-756, Korea
| | - D Thirumalai
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
8
|
de Melo Marques FA, Angelini R, Zaccarelli E, Farago B, Ruta B, Ruocco G, Ruzicka B. Structural and microscopic relaxations in a colloidal glass. SOFT MATTER 2015; 11:466-471. [PMID: 25406421 DOI: 10.1039/c4sm02010c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aging dynamics of a colloidal glass has been studied by multiangle dynamic light scattering, neutron spin echo, X-ray photon correlation spectroscopy and molecular dynamics simulations. The two relaxation processes, microscopic (fast) and structural (slow), have been investigated in an unprecedentedly wide range of time and length scales covering both ergodic and nonergodic regimes. The microscopic relaxation time remains diffusive at all length scales across the glass transition scaling with wavevector Q as Q(-2). The length-scale dependence of structural relaxation time changes from diffusive, characterized by a Q(-2)-dependence in the early stages of aging, to a Q(-1)-dependence in the full aging regime which marks a discontinuous hopping dynamics. Both regimes are associated with a stretched behaviour of the correlation functions. We expect these findings to provide a general description of both relaxations across the glass transition.
Collapse
Affiliation(s)
- Flavio Augusto de Melo Marques
- Center for Life Nano Science, IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|