1
|
Piñeros WD, Fodor É. Biased Ensembles of Pulsating Active Matter. PHYSICAL REVIEW LETTERS 2025; 134:038301. [PMID: 39927968 DOI: 10.1103/physrevlett.134.038301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025]
Abstract
We discover unexpected connections between packing configurations and rare fluctuations in dense systems of active particles subject to pulsation of size. Using large deviation theory, we examine biased ensembles which select atypical realizations of the dynamics exhibiting high synchronization in particle size. We show that the order emerging at high bias can manifest as distinct dynamical states featuring high to vanishing pulsation current. Remarkably, transitions between these states arise from changing the system geometry at fixed bias and constant density. We rationalize such transitions as arising from the change in packing configurations which, depending on box geometry, may induce highly ordered or geometrically frustrated structures. Furthermore, we reveal that a master curve in the unbiased dynamics, correlating polydispersity and current, helps predict the dynamical state emerging in the biased dynamics. Finally, we demonstrate that deformation waves can propagate under suitable geometries when biasing with local order.
Collapse
Affiliation(s)
- William D Piñeros
- University of Luxembourg, Department of Physics and Materials Science, L-1511 Luxembourg, Luxembourg
| | - Étienne Fodor
- University of Luxembourg, Department of Physics and Materials Science, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
2
|
Ruiz-Garcia M, Barriuso G CM, Alexander LC, Aarts DGAL, Ghiringhelli LM, Valeriani C. Discovering dynamic laws from observations: The case of self-propelled, interacting colloids. Phys Rev E 2024; 109:064611. [PMID: 39020989 DOI: 10.1103/physreve.109.064611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Active matter spans a wide range of time and length scales, from groups of cells and synthetic self-propelled colloids to schools of fish and flocks of birds. The theoretical framework describing these systems has shown tremendous success in finding universal phenomenology. However, further progress is often burdened by the difficulty of determining forces controlling the dynamics of individual elements within each system. Accessing this local information is pivotal for the understanding of the physics governing an ensemble of active particles and for the creation of numerical models capable of explaining the observed collective phenomena. In this work, we present ActiveNet, a machine-learning tool consisting of a graph neural network that uses the collective motion of particles to learn active and two-body forces controlling their individual dynamics. We verify our approach using numerical simulations of active Brownian particles, active particles undergoing underdamped Langevin dynamics, and chiral active Brownian particles considering different interaction potentials and values of activity. Interestingly, ActiveNet can equally learn conservative or nonconservative forces as well as torques. Moreover, ActiveNet has proven to be a useful tool to learn the stochastic contribution to the forces, enabling the estimation of the diffusion coefficients. Therefore, all coefficients of the equation of motion of Active Brownian Particles are captured. Finally, we apply ActiveNet to experiments of electrophoretic Janus particles, extracting the active and two-body forces controlling colloids' dynamics. On the one side, we have learned that the active force depends on the electric field and area fraction. On the other side, we have also discovered a dependence of the two-body interaction with the electric field that leads us to propose that the dominant force between active colloids is a screened electrostatic interaction with a constant length scale. We believe that the proposed methodological tool, ActiveNet, might open a new avenue for the study and modeling of experimental suspensions of active particles.
Collapse
Affiliation(s)
- Miguel Ruiz-Garcia
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
- Grupo Interdisciplinar Sistemas Complejos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | - Luca M Ghiringhelli
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany
- Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg, Martensstrasse 5-7, 91058 Erlangen, Germany
| | | |
Collapse
|
3
|
Beneduce C, Sciortino F, Šulc P, Russo J. Engineering Azeotropy to Optimize the Self-Assembly of Colloidal Mixtures. ACS NANO 2023; 17:24841-24853. [PMID: 38048489 PMCID: PMC10753881 DOI: 10.1021/acsnano.3c05569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
The goal of inverse self-assembly is to design interparticle interactions capable of assembling the units into a desired target structure. The effective assembly of complex structures often requires the use of multiple components, each new component increasing the thermodynamic degrees of freedom and, hence, the complexity of the self-assembly pathway. In this work we explore the possibility to use azeotropy, i.e., a special thermodynamic condition where the system behaves effectively as a one-component system, as a way to control the self-assembly of an arbitrary number of components. Exploiting the mass-balance equations, we show how to select patchy particle systems that exhibit azeotropic points along the desired self-assembly pathway. As an example we map the phase diagram of a binary mixture that, by design, fully assembles into cubic (and only cubic) diamond crystal via an azeotropic point. The ability to explicitly include azeotropic points in artificial designs reveals effective pathways for the self-assembly of complex structures.
Collapse
Affiliation(s)
- Camilla Beneduce
- Dipartimento
di Fisica, Sapienza Università di
Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Sciortino
- Dipartimento
di Fisica, Sapienza Università di
Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Petr Šulc
- School
of Molecular Sciences and Center for Molecular Design and Biomimetics,
The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- School
of Natural Sciences, Department of Bioscience, TU Munich, Am Coulombwall
4a, 85748, Garching, Germany
| | - John Russo
- Dipartimento
di Fisica, Sapienza Università di
Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Rivera-Rivera LY, Moore TC, Glotzer SC. Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot via digital alchemy. SOFT MATTER 2023; 19:2726-2736. [PMID: 36974942 DOI: 10.1039/d2sm01593e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization.
Collapse
Affiliation(s)
| | - Timothy C Moore
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Wang H, Torquato S. Equilibrium states corresponding to targeted hyperuniform nonequilibrium pair statistics. SOFT MATTER 2023; 19:550-564. [PMID: 36546870 DOI: 10.1039/d2sm01294d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The Zhang-Torquato conjecture [G. Zhang and S. Torquato, Phys. Rev. E, 2020, 101, 032124.] states that any realizable pair correlation function g2(r) or structure factor S(k) of a translationally invariant nonequilibrium system can be attained by an equilibrium ensemble involving only (up to) effective two-body interactions. To further test and study this conjecture, we consider two singular nonequilibrium models of recent interest that also have the exotic hyperuniformity property: a 2D "perfect glass" and a 3D critical absorbing-state model. We find that each nonequilibrium target can be achieved accurately by equilibrium states with effective one- and two-body potentials, lending further support to the conjecture. To characterize the structural degeneracy of such a nonequilibrium-equilibrium correspondence, we compute higher-order statistics for both models, as well as those for a hyperuniform 3D uniformly randomized lattice (URL), whose higher-order statistics can be very precisely ascertained. Interestingly, we find that the differences in the higher-order statistics between nonequilibrium and equilibrium systems with matching pair statistics, as measured by the "hole" probability distribution, provide measures of the degree to which a system is out of equilibrium. We show that all three systems studied possess the bounded-hole property and that holes near the maximum hole size in the URL are much rarer than those in the underlying simple cubic lattice. Remarkably, upon quenching, the effective potentials for all three systems possess local energy minima (i.e., inherent structures) with stronger forms of hyperuniformity compared to their target counterparts. Our methods are expected to facilitate the self-assembly of tunable hyperuniform soft-matter systems.
Collapse
Affiliation(s)
- Haina Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey, 08544, USA
- School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
| |
Collapse
|
6
|
Torquato S, Wang H. Precise determination of pair interactions from pair statistics of many-body systems in and out of equilibrium. Phys Rev E 2022; 106:044122. [PMID: 36397532 DOI: 10.1103/physreve.106.044122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The determination of the pair potential v(r) that accurately yields an equilibrium state at positive temperature T with a prescribed pair correlation function g_{2}(r) or corresponding structure factor S(k) in d-dimensional Euclidean space R^{d} is an outstanding inverse statistical mechanics problem with far-reaching implications. Recently, Zhang and Torquato [Phys. Rev. E 101, 032124 (2020)2470-004510.1103/PhysRevE.101.032124] conjectured that any realizable g_{2}(r) or S(k) corresponding to a translationally invariant nonequilibrium system can be attained by a classical equilibrium ensemble involving only (up to) effective pair interactions. Testing this conjecture for nonequilibrium systems as well as for nontrivial equilibrium states requires improved inverse methodologies. We have devised an optimization algorithm to precisely determine effective pair potentials that correspond to pair statistics of general translationally invariant disordered many-body equilibrium or nonequilibrium systems at positive temperatures. This methodology utilizes a parameterized family of pointwise basis functions for the potential function whose initial form is informed by small-, intermediate- and large-distance behaviors dictated by statistical-mechanical theory. Subsequently, a nonlinear optimization technique is utilized to minimize an objective function that incorporates both the target pair correlation function g_{2}(r) and structure factor S(k) so that the small intermediate- and large-distance correlations are very accurately captured. To illustrate the versatility and power of our methodology, we accurately determine the effective pair interactions of the following four diverse target systems: (1) Lennard-Jones system in the vicinity of its critical point, (2) liquid under the Dzugutov potential, (3) nonequilibrium random sequential addition packing, and (4) a nonequilibrium hyperuniform "cloaked" uniformly randomized lattice. We found that the optimized pair potentials generate corresponding pair statistics that accurately match their corresponding targets with total L_{2}-norm errors that are an order of magnitude smaller than that of previous methods. The results of our investigation lend further support to the Zhang-Torquato conjecture. Furthermore, our algorithm will enable one to probe systems with identical pair statistics but different higher-body statistics, which will shed light on the well-known degeneracy problem of statistical mechanics.
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
- School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA
| | - Haina Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
7
|
Russo J, Romano F, Kroc L, Sciortino F, Rovigatti L, Šulc P. SAT-assembly: a new approach for designing self-assembling systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:354002. [PMID: 35148521 DOI: 10.1088/1361-648x/ac5479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
We propose a general framework for solving inverse self-assembly problems, i.e. designing interactions between elementary units such that they assemble spontaneously into a predetermined structure. Our approach uses patchy particles as building blocks, where the different units bind at specific interaction sites (the patches), and we exploit the possibility of having mixtures with several components. The interaction rules between the patches is determined by transforming the combinatorial problem into a Boolean satisfiability problem (SAT) which searches for solutions where all bonds are formed in the target structure. Additional conditions, such as the non-satisfiability of competing structures (e.g. metastable states) can be imposed, allowing to effectively design the assembly path in order to avoid kinetic traps. We demonstrate this approach by designing and numerically simulating a cubic diamond structure from four particle species that assembles without competition from other polymorphs, including the hexagonal structure.
Collapse
Affiliation(s)
- John Russo
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
- European Centre for Living Technology (ECLT) Ca' Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
| | - Lukáš Kroc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, United States of America
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
- Institute for Complex Systems, Uos Sapienza, CNR, Rome 00185, Italy
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, United States of America
| |
Collapse
|
8
|
Baumketner A, Melnyk R. Kagome lattice made by impenetrable ellipses with attractive walls. SOFT MATTER 2022; 18:3801-3814. [PMID: 35522892 DOI: 10.1039/d2sm00479h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-dimensional structures, such as the kagome lattice, are experiencing renewed interest within the physics, chemistry and materials science communities in terms of both basic and applied research. Herein, we show that stable kagome lattices can be made by hard-core ellipses with attractive walls. We study a model in which hard-core ellipse is covered uniformly by an attractive square-well layer. Analytical calculations predict that for certain combinations of the asphericity aspect ratio and the attraction range, the kagome lattice is the ground-state conformation of this model. For one specific set of parameters computer simulations prove that the kagome lattice is the lowest free energy structure at low temperatures. At high temperatures, the conformational ensemble is dominated by liquid states. The temperature at which transition from the liquid to the kagome structure occurs has a maximum as a function of density, indicating that the underlying phase transformation is re-entrant. The maximum is attributed to the energy difference between the liquid and crystalline states. Our study reveals that the kagome lattice can be produced by means of very simple models. No specifically designed molecular shapes or interactions are required. Instead, very basic physical characteristics, such as asphericity and uniform attraction, are sufficient to induce spontaneous transition into this structure. In the context of the general understanding of the self-assembly processes, this finding is encouraging, giving one hope that the requirements for the assembly of other low-dimensional structures could be equally simple.
Collapse
Affiliation(s)
- A Baumketner
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsistsky Str., Lviv, UA-79011, Ukraine.
| | - R Melnyk
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsistsky Str., Lviv, UA-79011, Ukraine.
| |
Collapse
|
9
|
Ramos F, Ramos A, Pellicane G, Lee LL. Construction of a composite-sphere model for molecules of tetrahedral symmetry. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1913254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Franklin Ramos
- Department of Chemical & Materials Engineering, California State University, Pomona, CA, USA
| | - Ana Ramos
- Department of Chemical & Materials Engineering, California State University, Pomona, CA, USA
| | - Giuseppe Pellicane
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università degli Studi di Messina, Messina, Italy
- CNR-IPCF, Messina, Italy
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
- National Institute of Theoretical Physics (NIThEP), Pietermaritzburg, South Africa
| | - Lloyd L. Lee
- Department of Chemical & Materials Engineering, California State University, Pomona, CA, USA
| |
Collapse
|
10
|
Romano F, Russo J, Kroc L, Šulc P. Designing Patchy Interactions to Self-Assemble Arbitrary Structures. PHYSICAL REVIEW LETTERS 2020; 125:118003. [PMID: 32975991 DOI: 10.1103/physrevlett.125.118003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
One of the fundamental goals of nanotechnology is to exploit selective and directional interactions between molecules to design particles that self-assemble into desired structures, from capsids, to nanoclusters, to fully formed crystals with target properties (e.g., optical, mechanical, etc.). Here, we provide a general framework which transforms the inverse problem of self-assembly of colloidal crystals into a Boolean satisfiability problem for which solutions can be found numerically. Given a reference structure and the desired number of components, our approach produces designs for which the target structure is an energy minimum, and also allows us to exclude solutions that correspond to competing structures. We demonstrate the effectiveness of our approach by designing model particles that spontaneously nucleate milestone structures such as the cubic diamond, the pyrochlore, and the clathrate lattices.
Collapse
Affiliation(s)
- Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
- European Centre for Living Technology (ECLT) Ca' Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
| | - John Russo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale le Aldo Moro 5, 00185 Rome, Italy
| | - Lukáš Kroc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
| | - Petr Šulc
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
| |
Collapse
|
11
|
Zhang G, Torquato S. Realizable hyperuniform and nonhyperuniform particle configurations with targeted spectral functions via effective pair interactions. Phys Rev E 2020; 101:032124. [PMID: 32289971 DOI: 10.1103/physreve.101.032124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/24/2020] [Indexed: 11/07/2022]
Abstract
The capacity to identify realizable many-body configurations associated with targeted functional forms for the pair correlation function g_{2}(r) or its corresponding structure factor S(k) is of great fundamental and practical importance. While there are obvious necessary conditions that a prescribed structure factor at number density ρ must satisfy to be configurationally realizable, sufficient conditions are generally not known due to the infinite degeneracy of configurations with different higher-order correlation functions. A major aim of this paper is to expand our theoretical knowledge of the class of pair correlation functions or structure factors that are realizable by classical disordered ensembles of particle configurations, including exotic "hyperuniform" varieties. We first introduce a theoretical formalism that provides a means to draw classical particle configurations from canonical ensembles with certain pairwise-additive potentials that could correspond to targeted analytical functional forms for the structure factor. This formulation enables us to devise an improved algorithm to construct systematically canonical-ensemble particle configurations with such targeted pair statistics, whenever realizable. As a proof of concept, we test the algorithm by targeting several different structure factors across dimensions that are known to be realizable and one hyperuniform target that is known to be nontrivially unrealizable. Our algorithm succeeds for all realizable targets and appropriately fails for the unrealizable target, demonstrating the accuracy and power of the method to numerically investigate the realizability problem. Subsequently, we also target several families of structure-factor functions that meet the known necessary realizability conditions but are not known to be realizable by disordered hyperuniform point configurations, including d-dimensional Gaussian structure factors, d-dimensional generalizations of the two-dimensional one-component plasma (OCP), and the d-dimensional Fourier duals of the previous OCP cases. Moreover, we also explore unusual nonhyperuniform targets, including "hyposurficial" and "antihyperuniform" examples. In all of these instances, the targeted structure factors are achieved with high accuracy, suggesting that they are indeed realizable by equilibrium configurations with pairwise interactions at positive temperatures. Remarkably, we also show that the structure factor of nonequilibrium perfect glass, specified by two-, three-, and four-body interactions, can also be realized by equilibrium pair interactions at positive temperatures. Our findings lead us to the conjecture that any realizable structure factor corresponding to either a translationally invariant equilibrium or nonequilibrium system can be attained by an equilibrium ensemble involving only effective pair interactions. Our investigation not only broadens our knowledge of analytical functional forms for g_{2}(r) and S(k) associated with disordered point configurations across dimensions but also deepens our understanding of many-body physics. Moreover, our work can be applied to the design of materials with desirable physical properties that can be tuned by their pair statistics.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA; and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
12
|
Nowack L, Rice SA. Sequential phase transitions and transient structured fluctuations in two-dimensional systems with a high-density Kagome lattice phase. J Chem Phys 2019; 151:244504. [DOI: 10.1063/1.5130558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Linsey Nowack
- Department of Chemistry and the Chicago Center for Theoretical Chemistry, James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Stuart A. Rice
- Department of Chemistry and the Chicago Center for Theoretical Chemistry, James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Chen D, Zhang G, Torquato S. Inverse Design of Colloidal Crystals via Optimized Patchy Interactions. J Phys Chem B 2018; 122:8462-8468. [DOI: 10.1021/acs.jpcb.8b05627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wagner JW, Dannenhoffer-Lafage T, Jin J, Voth GA. Extending the range and physical accuracy of coarse-grained models: Order parameter dependent interactions. J Chem Phys 2018; 147:044113. [PMID: 28764380 DOI: 10.1063/1.4995946] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Order parameters (i.e., collective variables) are often used to describe the behavior of systems as they capture different features of the free energy surface. Yet, most coarse-grained (CG) models only employ two- or three-body non-bonded interactions between the CG particles. In situations where these interactions are insufficient for the CG model to reproduce the structural distributions of the underlying fine-grained (FG) model, additional interactions must be included. In this paper, we introduce an approach to expand the basis sets available in the multiscale coarse-graining (MS-CG) methodology by including order parameters. Then, we investigate the ability of an additive local order parameter (e.g., density) and an additive global order parameter (i.e., distance from a hard wall) to improve the description of CG models in interfacial systems. Specifically, we study methanol liquid-vapor coexistence, acetonitrile liquid-vapor coexistence, and acetonitrile liquid confined by hard-wall plates, all using single site CG models. We find that the use of order parameters dramatically improves the reproduction of structural properties of interfacial CG systems relative to the FG reference as compared with pairwise CG interactions alone.
Collapse
Affiliation(s)
- Jacob W Wagner
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Thomas Dannenhoffer-Lafage
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jaehyeok Jin
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
15
|
Piñeros WD, Lindquist BA, Jadrich RB, Truskett TM. Inverse design of multicomponent assemblies. J Chem Phys 2018; 148:104509. [DOI: 10.1063/1.5021648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- William D. Piñeros
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Beth A. Lindquist
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ryan B. Jadrich
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
16
|
Affiliation(s)
- Michał Cieśla
- M. Smoluchowski Institute of Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Piotr Kubala
- M. Smoluchowski Institute of Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
17
|
Rey M, Law AD, Buzza DMA, Vogel N. Anisotropic Self-Assembly from Isotropic Colloidal Building Blocks. J Am Chem Soc 2017; 139:17464-17473. [DOI: 10.1021/jacs.7b08503] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcel Rey
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Interdisciplinary
Center for Functional Particle Systems, Friedrich-Alexander University Erlangen-Nürnberg, Haberstrasse 9a, 91058 Erlangen, Germany
| | - Adam D. Law
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - D. Martin A. Buzza
- G W Gray Centre for Advanced Materials, School of Mathematics & Physical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Interdisciplinary
Center for Functional Particle Systems, Friedrich-Alexander University Erlangen-Nürnberg, Haberstrasse 9a, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Zanjani MB, Crocker JC, Sinno T. Self-assembly with colloidal clusters: facile crystal design using connectivity landscape analysis. SOFT MATTER 2017; 13:7098-7105. [PMID: 28850137 DOI: 10.1039/c7sm01407d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent experimental and theoretical studies demonstrate that prefabricated micron-scale colloidal clusters functionalized with DNA oligomers offer a practical way for introducing anisotropic interactions, significantly extending the scope of DNA-mediated colloidal assembly, and enabling the formation of interesting crystalline superstructures that are otherwise inaccessible with short-ranged, spherically symmetric interactions. However, it is apparent that the high-dimensional parameter space that defines the geometric and interaction properties of such systems poses an obstacle to assembly design and optimization. Here, we present a geometrical analysis that generates connectivity landscapes for target superstructures, greatly reducing the space over which subsequent experimental trials must search. We focus on several superstructures that are assembled from binary systems comprised of 'merged' or 'sintered' tetrahedral clusters and single spheres. We also validate and extend the analytical constraint approach with direct MD simulations of superstructure nucleation and growth.
Collapse
Affiliation(s)
- Mehdi B Zanjani
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
19
|
Levashov VA. Crystalline structures of particles interacting through the harmonic-repulsive pair potential. J Chem Phys 2017; 147:114503. [DOI: 10.1063/1.5002536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Chen D, Aw WY, Devenport D, Torquato S. Structural Characterization and Statistical-Mechanical Model of Epidermal Patterns. Biophys J 2017; 111:2534-2545. [PMID: 27926854 DOI: 10.1016/j.bpj.2016.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
In proliferating epithelia of mammalian skin, cells of irregular polygon-like shapes pack into complex, nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct space (correlation function) and Fourier space (structure factor) of the cell centroids in the early stages of embryonic development show structural directional dependence (statistical anisotropy), which is a reflection of the fact that cells are stretched, which promotes uniaxial growth along the epithelial plane. In the late stages, the patterns tend toward statistically isotropic states, as cells attain global polarization and epidermal growth shifts to produce the skin's outer stratified layers. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-range soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. In contrast with many vertex-based models, our statistical-mechanical model does not explicitly incorporate information about the cell shapes and interfacial energy between cells; nonetheless, our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments, as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. The array of structural descriptors that we deploy enable us to distinguish between normal, mechanically deformed, and pathological skin tissues. Our statistical-mechanical model enables one to generate tissue microstructure at will for further analysis. We also discuss ways in which our model might be extended to better understand morphogenesis (in particular the emergence of planar cell polarity), wound healing, and disease-progression processes in skin, and how it could be applied to the design of synthetic tissues.
Collapse
Affiliation(s)
- Duyu Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey; Department of Physics, Princeton University, Princeton, New Jersey; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey; Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
21
|
Jadrich RB, Lindquist BA, Truskett TM. Probabilistic inverse design for self-assembling materials. J Chem Phys 2017. [DOI: 10.1063/1.4981796] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- R. B. Jadrich
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - B. A. Lindquist
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - T. M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
22
|
Piñeros WD, Truskett TM. Designing pairwise interactions that stabilize open crystals: Truncated square and truncated hexagonal lattices. J Chem Phys 2017; 146:144501. [DOI: 10.1063/1.4979715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- William D. Piñeros
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
23
|
Zanjani MB, Jenkins IC, Crocker JC, Sinno T. Colloidal Cluster Assembly into Ordered Superstructures via Engineered Directional Binding. ACS NANO 2016; 10:11280-11289. [PMID: 27936578 DOI: 10.1021/acsnano.6b06415] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent experimental studies have demonstrated a facile route for fabricating large numbers of geometrically uniform colloidal clusters out of submicron DNA-functionalized spheres. These clusters are ideally suited for use as anisotropic building blocks for hierarchical assembly of superstructures with symmetries that are otherwise inaccessible with simple spherical particles. We study computationally the self-assembly of cubic, tetrahedral, and octahedral clusters mediated by "bond spheres" that dock with the clusters at specific preferential sites, providing robust and well-defined directional bonding. We analyze the assembly process with a combination of direct molecular dynamics simulations of superstructure growth and state-of-the-art umbrella sampling techniques to compute nucleation free energy profiles. The simulations confirm the versatility and robustness of hierarchical cluster assembly but also reveal potential obstacles in the form of energetically accessible defect states. We find and study solutions for bypassing these defects that rely on appropriate selection of particle size and interparticle interaction as a function of building block shape and, therefore, provide operational guidelines for future experimental demonstrations.
Collapse
Affiliation(s)
- Mehdi B Zanjani
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Ian C Jenkins
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Lindquist BA, Jadrich RB, Truskett TM. Communication: Inverse design for self-assembly via on-the-fly optimization. J Chem Phys 2016. [DOI: 10.1063/1.4962754] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Beth A. Lindquist
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ryan B. Jadrich
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
25
|
Piñeros WD, Baldea M, Truskett TM. Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices. J Chem Phys 2016; 145:054901. [DOI: 10.1063/1.4960113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- William D. Piñeros
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael Baldea
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
26
|
Piñeros WD, Baldea M, Truskett TM. Breadth versus depth: Interactions that stabilize particle assemblies to changes in density or temperature. J Chem Phys 2016; 144:084502. [DOI: 10.1063/1.4942117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- William D. Piñeros
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael Baldea
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
27
|
Torikai M. Free-energy functional method for inverse problem of self assembly. J Chem Phys 2015; 142:144102. [DOI: 10.1063/1.4917175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
28
|
Metere A, Oleynikov P, Dzugutov M, O’Keeffe M. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid. J Chem Phys 2014; 141:234503. [DOI: 10.1063/1.4903925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
29
|
McDermott D, Olson Reichhardt CJ, Reichhardt C. Stripe systems with competing interactions on quasi-one dimensional periodic substrates. SOFT MATTER 2014; 10:6332-6338. [PMID: 25030212 DOI: 10.1039/c4sm01341g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We numerically examine the two-dimensional ordering of a stripe forming system of particles with competing long-range repulsion and short-range attraction in the presence of a quasi-one-dimensional corrugated substrate. As a function of increasing substrate strength or period we show that a remarkable variety of distinct orderings can be realized, including modulated stripes, prolate clump phases, two dimensional ordered kink structures, crystalline void phases, and smectic phases. Additionally in some cases the stripes align perpendicular to the substrate troughs. Our results suggest that a new route to self assembly for systems with competing interactions can be achieved through the addition of a simple periodic modulated substrate.
Collapse
Affiliation(s)
- Danielle McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | |
Collapse
|
30
|
Affiliation(s)
- Avni Jain
- McKetta Dept. of Chemical Engineering; The University of Texas at Austin; Austin TX 78712
| | - Jonathan A. Bollinger
- McKetta Dept. of Chemical Engineering; The University of Texas at Austin; Austin TX 78712
| | - Thomas M. Truskett
- McKetta Dept. of Chemical Engineering; The University of Texas at Austin; Austin TX 78712
| |
Collapse
|