1
|
Ilg P, Kröger M. Field- and concentration-dependent relaxation of magnetic nanoparticles and optimality conditions for magnetic fluid hyperthermia. Sci Rep 2023; 13:16523. [PMID: 37783724 PMCID: PMC10545801 DOI: 10.1038/s41598-023-43140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The field-dependent relaxation dynamics of suspended magnetic nanoparticles continues to present a fascinating topic of basic science that at the same time is highly relevant for several technological and biomedical applications. Renewed interest in the intriguing behavior of magnetic nanoparticles in response to external fields has at least in parts be driven by rapid advances in magnetic fluid hyperthermia research. Although a wealth of experimental, theoretical, and simulation studies have been performed in this field in recent years, several contradictory findings have so far prevented the emergence of a consistent picture. Here, we present a dynamic mean-field theory together with comprehensive computer simulations of a microscopic model system to systematically discuss the influence of several key parameters on the relaxation dynamics, such as steric and dipolar interactions, the external magnetic field strength and frequency, as well as the ratio of Brownian and Néel relaxation time. We also discuss the specific and intrinsic loss power as measures of the efficiency of magnetic fluid heating and discuss optimality conditions in terms of fluid and field parameters. Our results are helpful to reconcile contradictory findings in the literature and provide an important step towards a more consistent understanding. In addition, our findings also help to select experimental conditions that optimize magnetic fluid heating applications.
Collapse
Affiliation(s)
- Patrick Ilg
- School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading, RG6 6AX, UK.
| | - Martin Kröger
- Magnetism and Interface Physics, Computational Polymer Physics, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
2
|
Liu X, Li D. Tuning the magneto-rheological properties of magnetic fluid using hydrophilic fumed silica nanoparticles. SOFT MATTER 2021; 17:8175-8184. [PMID: 34525151 DOI: 10.1039/d1sm00806d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we study the effect of hydrophilic fumed silica nanoparticles with different mass fractions on the magneto-rheological properties of magnetic fluid, and reveal the mechanism by the coarse-grained molecular dynamics simulation. The magneto-rheological experimental results show that the viscosity of the magnetic fluid with silica nanoparticles will first decrease and then increase (larger than that of the pure magnetic fluid) as the mass fraction of silica nanoparticles increases. We use the molecular dynamics calculations to further explain the influence mechanism of the silica nanoparticles on the magneto-rheological properties of the magnetic fluid. We find that non-magnetic particles will hinder the formation of chains of magnetic particles and shorten the length of the chains under magnetic fields. Our research shows that the magneto-rheological properties of magnetic fluid can be optimized with appropriate hydrophilic fumed silica nanoparticles, which is of great significance in the fields of dynamic seals and microfluidics.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Decai Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Camp PJ, Ivanov AO, Sindt JO. How chains and rings affect the dynamic magnetic susceptibility of a highly clustered ferrofluid. Phys Rev E 2021; 103:062611. [PMID: 34271695 DOI: 10.1103/physreve.103.062611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/03/2021] [Indexed: 11/07/2022]
Abstract
The dynamic magnetic susceptibility, χ(ω), of a model ferrofluid at a very low concentration (volume fraction, approximately 0.05%), and with a range of dipolar coupling constants (1≤λ≤8), is examined using Brownian dynamics simulations. With increasing λ, the structural motifs in the system change from unclustered particles, through chains, to rings. This gives rise to a nonmonotonic dependence of the static susceptibility χ(0) on λ and qualitative changes to the frequency spectrum. The behavior of χ(0) is already understood, and the simulation results are compared to an existing theory. The single-particle rotational dynamics are characterized by the Brownian time, τ_{B}, which depends on the particle size, carrier-liquid viscosity, and temperature. With λ≤5.5, the imaginary part of the spectrum, χ^{''}(ω), shows a single peak near ω∼τ_{B}^{-1}, characteristic of single particles. With λ≥5.75, the spectrum is dominated by the low-frequency response of chains. With λ≥7, new features appear at high frequency, which correspond to intracluster motions of dipoles within chains and rings. The peak frequency corresponding to these intracluster motions can be computed accurately using a simple theory.
Collapse
Affiliation(s)
- Philip J Camp
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, and Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Alexey O Ivanov
- Department of Theoretical and Mathematical Physics, Ural Mathematical Center, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Julien O Sindt
- EPCC, Bayes Centre, University of Edinburgh, 47 Potterrow, Edinburgh EH8 9BT, Scotland
| |
Collapse
|
4
|
Peroukidis SD, Klapp SHL, Vanakaras AG. Field-induced anti-nematic and biaxial ordering in binary mixtures of discotic mesogens and spherical magnetic nanoparticles. SOFT MATTER 2020; 16:10667-10675. [PMID: 33084728 DOI: 10.1039/d0sm01366h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using computer simulations we explore the equilibrium structure and response to external stimuli of complex magnetic hybrids consisting of magnetic particles in discotic liquid crystalline matrices. We show that the anisotropy of the liquid crystalline matrix (either in the nematic or in the columnar phase) promotes the collective orientational ordering of self-assembled magnetic particles. Upon applying an external homogeneous magnetic field in an otherwise isotropic state, the magnetic particles self-assemble into linear-rodlike-chains. At the same time structural changes occur in the matrix. The matrix transforms from an isotropic to a non-conventional anti-nematic state in which the symmetry axis of the discs is, on average, perpendicular to the magnetic field. In addition, a stable biaxial nematic state is found upon applying an external field to an otherwise uniaxial discotic nematic state. These observed morphologies constitute an appealing alternative to binary mixtures of rigid rod-disc system and indicate that non-trivial biaxial ordering can be obtained in the presence of a uniaxial external stimulus.
Collapse
|
5
|
Structure and rheology of soft hybrid systems of magnetic nanoparticles in liquid-crystalline matrices: results from particle-resolved computer simulations. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Hybrid mixtures composed of magnetic nanoparticles (MNP) in liquid crystalline (LC) matrices are a fascinating class of soft materials with intriguing physical properties and a wide range of potential applications, e.g., as stimuli-responsive and adaptive materials. Already in the absence of an external stimulus, these systems can display various types of orientationally disordered and ordered phases, which are enriched by self-assembled structures formed by the MNPs. In the presence of external fields, one typically observes highly nonlinear macroscopic behavior. However, an understanding of the structure and dynamics of such systems on the particle level has, so far, remained elusive. In the present paper we review recent computer simulation studies targeting the structure, equilibrium dynamics and rheology of LC-MNP systems, in which the particle sizes of the two components are comparable. As a numerically tractable model system we consider mixtures of soft spherical or elongated particles with a permanent magnetic dipole moment and ellipsoidal non-magnetic particles interacting via a Gay-Berne potential. We address, first, equilibrium aspects such as structural organization and self-assembly (cluster formation) of the MNPs in dependence of the orientational state of the matrix, the role of the size ratio, the impact of an external magnetic field, and the translational and orientational diffusion of the two components. Second, we discuss the non-equilibrium dynamics of LC-MNP mixtures under planar shear flow, considering both, spherical and non-spherical MNPs. Our results contribute to a detailed understanding of these intriguing hybrid materials, and they may serve as a guide for future experiments.
Collapse
|
6
|
Ivanov AO, Zubarev A. Chain Formation and Phase Separation in Ferrofluids: The Influence on Viscous Properties. MATERIALS 2020; 13:ma13183956. [PMID: 32906703 PMCID: PMC7559013 DOI: 10.3390/ma13183956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Ferrofluids have attracted considerable interest from researchers and engineers due to their rich set of unique physical properties that are valuable for many industrial and biomedical applications. Many phenomena and features of ferrofluids' behavior are determined by internal structural transformations in the ensembles of particles, which occur due to the magnetic interaction between the particles. An applied magnetic field induces formations, such as linear chains and bulk columns, that become elongated along the field. In turn, these structures dramatically change the rheological and other physical properties of these fluids. A deep and clear understanding of the main features and laws of the transformations is necessary for the understanding and explanation of the macroscopic properties and behavior of ferrofluids. In this paper, we present an overview of experimental and theoretical works on the internal transformations in these systems, as well as on the effect of the internal structures on the rheological effects in the fluids.
Collapse
Affiliation(s)
- Alexey O. Ivanov
- Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave. 51, 620000 Ekaterinburg, Russia;
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Andrey Zubarev
- Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave. 51, 620000 Ekaterinburg, Russia;
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
- Correspondence: ; Tel.: +7-343-2160-765
| |
Collapse
|
7
|
Shrivastav GP, H Siboni N, Klapp SHL. Steady-state rheology and structure of soft hybrid mixtures of liquid crystals and magnetic nanoparticles. SOFT MATTER 2020; 16:2516-2527. [PMID: 32068218 DOI: 10.1039/c9sm02080b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using non-equilibrium molecular dynamics simulations, we study the rheology of a model hybrid mixture of liquid crystals (LCs) and dipolar soft spheres (DSS) representing magnetic nanoparticles. The bulk isotropic LC-DSS mixture is sheared with different shear rates using Lees-Edwards periodic boundary conditions. The steady-state rheological properties and the effect of the shear on the microstructure of the mixture are studied for different strengths of the dipolar coupling, λ, among the DSS. We find that at large shear rates, the mixture shows a shear-thinning behavior for all considered values of λ. At low and intermediate values of λ, a crossover from Newtonian to non-Newtonian behavior is observed as the rate of applied shear is increased. In contrast, for large values of λ, such a crossover is not observed within the range of shear rates considered. Also, the extent of the non-Newtonian regime increases as λ is increased. These features can be understood via the shear-induced changes of the microstructure. In particular, the LCs display a shear-induced isotropic-to-nematic transition at large shear rates with a shear-rate dependent degree of nematic ordering. The DSS show a shear-induced nematic ordering only for large values of λ, where the particles self-assemble into chains. Moreover, at large λ and low shear rates, our simulations indicate that the DSS form ferromagnetic domains.
Collapse
Affiliation(s)
- Gaurav P Shrivastav
- Institut für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstr. 8-10/136, 1040 Vienna, Austria.
| | | | | |
Collapse
|
8
|
H. Siboni N, Shrivastav GP, Klapp SHL. Non-monotonic response of a sheared magnetic liquid crystal to a continuously increasing external field. J Chem Phys 2020; 152:024505. [DOI: 10.1063/1.5126398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Nima H. Siboni
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Gaurav P. Shrivastav
- Institute für Theoretical Physics, Technische Universität Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
| | - Sabine H. L. Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
9
|
Ilg P, Kröger M. Dynamics of interacting magnetic nanoparticles: effective behavior from competition between Brownian and Néel relaxation. Phys Chem Chem Phys 2020; 22:22244-22259. [PMID: 33001111 DOI: 10.1039/d0cp04377j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intriguing properties of magnetic nanoparticles have sparked a growing number of theoretical studies as well as practical applications. Here, we provide the first comprehensive study of the influence of interactions on the two main relaxation mechanisms: internal (Néel) and Brownian relaxation. While non-interacting magnetic nanoparticles show Debye behavior with an effective relaxation time, many authors use this model also for the interacting case. Since Néel relaxation is typically a thermally activated process on times scales that are many orders of magnitude larger than the underlying micromagnetic times, we use extensive computer simulations employing a Brownian dynamics/Monte-Carlo algorithm to show that dipolar interactions lead to significant deviations from the Debye behavior. We find that Néel and Brownian relaxation can be considered as independent processes for short enough times until dipolar interactions lead to a coupling of these mechanisms, making the interpretation more difficult. We provide mean-field arguments that describe these short and long-time, effective relaxation times well for weak up to moderate interaction strengths. Our findings about the coupling of Brownian and Néel process and the effective relaxation time provide an important theoretical insight that will have also important consequences for the interpretation of magnetic susceptibility measurements and magnetorelaxometry analysis.
Collapse
Affiliation(s)
- Patrick Ilg
- School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading RG6 6AX, UK.
| | | |
Collapse
|
10
|
Ilg P. Diffusion-jump model for the combined Brownian and Néel relaxation dynamics of ferrofluids in the presence of external fields and flow. Phys Rev E 2019; 100:022608. [PMID: 31574757 DOI: 10.1103/physreve.100.022608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 11/07/2022]
Abstract
Relaxation of suspended magnetic nanoparticles occurs via Brownian rotational diffusion of the particle as well as internal magnetization dynamics. The latter is often modeled by the stochastic Landau-Lifshitz equation, but its numerical treatment becomes prohibitively expensive in many practical applications due to a timescale separation between fast, Larmor-type precession and slow, barrier-crossing dynamics. Here, a diffusion-jump model is proposed to take advantage of the timescale separation and to approximate barrier-crossings as thermally activated jump processes that occur alongside rotational diffusion. The predictions of our diffusion-jump model are compared to reference results obtained by solving the stochastic Landau-Lifshitz equation coupled to rotational Brownian motion. Good agreement is found in the regime of high-energy barriers where Néel relaxation can be considered a thermally activated rare event. While many works in the field have neglected Néel relaxation altogether, our approach opens the possibility to efficiently include Néel relaxation also into interacting many-particle models.
Collapse
Affiliation(s)
- Patrick Ilg
- School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading RG6 6AX, United Kingdom
| |
Collapse
|
11
|
Martin DA, Grigera TS, Marconi VI. Speeding up the study of diluted dipolar systems. Phys Rev E 2019; 99:022604. [PMID: 30934321 DOI: 10.1103/physreve.99.022604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 11/07/2022]
Abstract
We study the regimes of a diluted dipolar system through Monte Carlo numerical simulations in the NVT ensemble. To accelerate the dynamics, several approximations and speed-up algorithms are proposed and tested. In particular, it turns out that "cluster move Monte Carlo" algorithm speeds-up to two decades faster than the traditional Monte Carlo, depending on temperature and density. We find simple-fluid, chain-fluid, ring-fluid, gel, and antiparallel columnar regimes, which are studied and characterized through positional, orientational, and thermodynamical observables.
Collapse
Affiliation(s)
- D A Martin
- Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), CONICET and Universidad Nacional de Mar del Plata, Funes no. 3350, 7600, Mar del Plata, Argentina
| | - T S Grigera
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET and Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 59 no. 789, B1900BTE La Plata, Argentina.,CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - V I Marconi
- FaMAF and IFEG (UNC-CONICET), Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
12
|
Shrivastav GP, Klapp SHL. Anomalous transport of magnetic colloids in a liquid crystal-magnetic colloid mixture. SOFT MATTER 2019; 15:973-982. [PMID: 30652721 DOI: 10.1039/c8sm02090f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report an extensive molecular dynamics study on the translational dynamics of a hybrid system composed of dipolar soft spheres (DSS), representing ferromagnetic particles, suspended in a liquid crystal (LC) matrix. We observe that the LC matrix strongly modifies the dynamics of the DSS. In the isotropic regime, the DSS show a crossover from subdiffusive to normal diffusive behavior at long times, with an increase of the subdiffusive regime as the dipolar coupling strength is increased. In the nematic regime, the LC matrix, due to the collective reorientation of LC particles, imposes a cylindrical confinement on the DSS chains. This leads to a diffusive dynamics of DSS along the nematic director and a subdiffusive dynamics (with an exponent of ∼0.5) in the perpendicular direction. The confinement provided by the LC matrix is also reflected by the oscillatory behavior of the components of the velocity autocorrelation function of the DSS in the nematic phase.
Collapse
Affiliation(s)
- Gaurav P Shrivastav
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenberg Str. 36, 10623 Berlin, Germany.
| | | |
Collapse
|
13
|
Maloney RC, Hall CK. Phase diagrams of mixtures of dipolar rods and discs. SOFT MATTER 2018; 14:7894-7905. [PMID: 30230508 DOI: 10.1039/c8sm01225c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-assembly of binary mixtures that contain anisotropic, interacting colloidal particles have been proposed as a way to create new, multi-functional materials. We simulate binary mixtures of dipolar rods and dipolar discs in two-dimensions using discontinuous molecular dynamics to determine how the assembled structures of these mixtures differ from those seen in single component systems. Two different binary mixtures are investigated: a mixture of an equal number of dipolar rods and dipolar discs ("equal number"), and a mixture where the area fraction of dipolar rods is equal to the area fraction of dipolar discs ("equal area"). Phase boundaries between fluid, string-fluid, and "gel" phases are calculated and compared to the phase boundaries of the pure components. Looking deeper at the underlying structure of the mixture reveals a complex interplay between the rods and discs and the formation of states where the two components are in different phases. The mixtures exhibit phases where both rods and discs are in the fluid phase, where rods form a string-fluid while discs remain in the fluid phase, a rod string-fluid coexisting with a disc string-fluid, a "gel" that consists primarily of rods while the discs form either a fluid or string-fluid phase, and a "gel" that contains both rods and discs. Our results give insight into the general assembly pathway of binary mixtures, and how complex aggregates can be created by varying the mixture composition, strength of interaction between the two components, and the temperature. By manipulating the properties of one of the components it should be possible to fabricate bifunctional, thermally responsive self-assembled materials.
Collapse
Affiliation(s)
- Ryan C Maloney
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
14
|
Lyutyy TV, Reva VV. Energy dissipation of rigid dipoles in a viscous fluid under the action of a time-periodic field: The influence of thermal bath and dipole interaction. Phys Rev E 2018; 97:052611. [PMID: 29906895 DOI: 10.1103/physreve.97.052611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 11/07/2022]
Abstract
Ferrofluid heating by an external alternating field is studied based on the rigid dipole model, where the magnetization of each particle in a fluid is supposed to be firmly fixed in the crystal lattice. Equations of motion, employing Newton's second law for rotational motion, the condition of rigid body rotation, and the assumption that the friction torque is proportional to angular velocity are used. This oversimplification permits us to expand the model easily: to take into account the thermal noise and interparticle interaction that allows us to estimate from unified positions the role of thermal activation and dipole interaction in the heating process. Our studies are conducted in three stages. The exact expressions for the average power loss of a single particle are obtained within the dynamical approximation. Then, in the stochastic case, the power loss of a single particle is estimated analytically using the Fokker-Planck equation and numerically using the effective Langevin equation. Finally, the power loss for the particle ensemble is obtained using the molecular dynamics method. Here, the local dipole fields are calculated approximately based on the Barnes-Hut algorithm. The revealed trends in the behavior of both a single particle and the particle ensemble suggest the way of choosing the conditions for obtaining the maximum heating efficiency. The competitiveness character of the interparticle interaction and thermal noise is investigated in detail. Two situations, when the thermal noise rectifies the power loss reduction caused by the interaction, are described. The first of them is related to the complete destruction of dense clusters at high noise intensity. The second one originates from the rare switching of the particles in clusters due to thermal activation, when the noise intensity is relatively weak. In this way, the constructive role of noise appears in the system.
Collapse
Affiliation(s)
- T V Lyutyy
- Sumy State University, 2 Rimsky-Korsakov Street, UA-40007 Sumy, Ukraine
| | - V V Reva
- Sumy State University, 2 Rimsky-Korsakov Street, UA-40007 Sumy, Ukraine
| |
Collapse
|
15
|
Kiani B, Faivre D, Klumpp S. Self-organization and stability of magnetosome chains-A simulation study. PLoS One 2018; 13:e0190265. [PMID: 29315342 PMCID: PMC5760029 DOI: 10.1371/journal.pone.0190265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/11/2017] [Indexed: 11/18/2022] Open
Abstract
Magnetotactic bacteria orient in magnetic fields with the help of their magnetosome chain, a linear structure of membrane enclosed magnetic nanoparticles (magnetosomes) anchored to a cytoskeletal filament. Here, we use simulations to study the assembly and the stability of magnetosome chains. We introduce a computational model describing the attachment of the magnetosomes to the filament and their magnetic interactions. We show that the filamentous backbone is crucial for the robust assembly of the magnetic particles into a linear chain, which in turn is key for the functionality of the chain in cellular orientation and magnetically directed swimming. In addition, we simulate the response to an external magnetic field that is rotated away from the axis of the filament, an experimental method used to probe the mechanical stability of the chain. The competition between alignment along the filament and alignment with the external fields leads to the rupture of a chain if the applied field exceeeds a threshold value. These observations are in agreement with previous experiments at the population level. Beyond that, our simulations provide a detailed picture of chain rupture at the single cell level, which is found to happen through two abrupt events, which both depend on the field strength and orientation. The re-formation of the chain structure after such rupture is found to be strongly sped up in the presence of a magnetic field parallel to the filament, an observation that may also be of interest for the design of self-healing materials. Our simulations underline the dynamic nature of the magnetosome chain. More generally, they show the rich complexity of self-assembly in systems with competing driving forces for alignment.
Collapse
Affiliation(s)
- Bahareh Kiani
- Department Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm 14424 Potsdam, Germany
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- * E-mail: (BK); (SK)
| | - Damien Faivre
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Stefan Klumpp
- Department Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm 14424 Potsdam, Germany
- Institute for Nonlinear Dynamics, Georg August University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen, Germany
- * E-mail: (BK); (SK)
| |
Collapse
|
16
|
Peroukidis SD, Klapp SHL. Orientational order and translational dynamics of magnetic particle assemblies in liquid crystals. SOFT MATTER 2016; 12:6841-6850. [PMID: 27460190 DOI: 10.1039/c6sm01264g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Implementing extensive molecular dynamics simulations we explore the organization of magnetic particle assemblies (clusters) in a uniaxial liquid crystalline matrix comprised of rodlike particles. The magnetic particles are modelled as soft dipolar spheres with diameter significantly smaller than the width of the rods. Depending on the dipolar strength coupling the magnetic particles arrange into head-to-tail configurations forming various types of clusters including rings (closed loops) and chains. In turn, the liquid crystalline matrix induces long range orientational ordering to these structures and promotes their diffusion along the director of the phase. Different translational dynamics are exhibited as the liquid crystalline matrix transforms either from isotropic to nematic or from nematic to smectic state. This is caused due to different collective motion of the magnetic particles into various clusters in the anisotropic environments. Our results offer a physical insight for understanding both the structure and dynamics of magnetic particle assemblies in liquid crystalline matrices.
Collapse
Affiliation(s)
- Stavros D Peroukidis
- Institute of Theoretical Physics, Technical University Berlin, Secr. EW 7-1 Hardenbergstr. 36, D-10623 Berlin, Germany.
| | - Sabine H L Klapp
- Institute of Theoretical Physics, Technical University Berlin, Secr. EW 7-1 Hardenbergstr. 36, D-10623 Berlin, Germany.
| |
Collapse
|
17
|
May K, Eremin A, Stannarius R, Peroukidis SD, Klapp SHL, Klein S. Colloidal Suspensions of Rodlike Nanocrystals and Magnetic Spheres under an External Magnetic Stimulus: Experiment and Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5085-5093. [PMID: 27119202 DOI: 10.1021/acs.langmuir.6b00739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using experiments and molecular dynamics simulations, we explore magnetic field-induced phase transformations in suspensions of nonmagnetic rodlike and magnetic sphere-shaped particles. We experimentally demonstrate that an external uniform magnetic field causes the formation of small, stable clusters of magnetic particles that, in turn, induce and control the orientational order of the nonmagnetic subphase. Optical birefringence was studied as a function of the magnetic field and the volume fractions of each particle type. Steric transfer of the orientational order was investigated by molecular dynamics (MD) simulations; the results are in qualitative agreement with the experimental observations. By reproducing the general experimental trends, the MD simulation offers a cohesive bottom-up interpretation of the physical behavior of such systems, and it can also be regarded as a guide for further experimental research.
Collapse
Affiliation(s)
- Kathrin May
- Otto-von-Guericke Universität Magdeburg , Universitätplatz 2, 39106 Magdeburg, Germany
| | - Alexey Eremin
- Otto-von-Guericke Universität Magdeburg , Universitätplatz 2, 39106 Magdeburg, Germany
| | - Ralf Stannarius
- Otto-von-Guericke Universität Magdeburg , Universitätplatz 2, 39106 Magdeburg, Germany
| | - Stavros D Peroukidis
- Institute of Theoretical Physics, Technical University Berlin , Secr. EW 7-1 Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute of Theoretical Physics, Technical University Berlin , Secr. EW 7-1 Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Susanne Klein
- HP Laboratories , Long Down Avenue, Stoke Gifford, Bristol BS34 8QZ, U.K
| |
Collapse
|
18
|
Klapp SH. Collective dynamics of dipolar and multipolar colloids: From passive to active systems. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Peroukidis SD, Lichtner K, Klapp SHL. Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices. SOFT MATTER 2015; 11:5999-6008. [PMID: 26041553 DOI: 10.1039/c5sm00903k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the self-organization of a binary mixture of similar sized rods and dipolar soft spheres by means of Monte-Carlo simulations. We model interparticle interactions by employing anisotropic Gay-Berne, dipolar and soft-sphere interactions. In the limit of vanishing magnetic moments we obtain a variety of fully miscible liquid crystalline phases including nematic, smectic and lamellar phases. For the magnetic mixture, we find that the liquid crystalline matrix supports the formation of orientationally ordered ferromagnetic chains. Depending on the relative size of the species the chains align parallel or perpendicular to the director of the rods forming uniaxial or biaxial nematic, smectic and lamellar phases. As an exemplary external perturbation we apply a homogeneous magnetic field causing uniaxial or biaxial ordering to an otherwise isotropic state.
Collapse
Affiliation(s)
- Stavros D Peroukidis
- Institute of Theoretical Physics, Technical University Berlin, Secr. EW 7-1 Hardenbergstr. 36, D-10623 Berlin, Germany.
| | | | | |
Collapse
|
20
|
Sreekumari A, Ilg P. Anisotropy of magnetoviscous effect in structure-forming ferrofluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012306. [PMID: 26274161 DOI: 10.1103/physreve.92.012306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 06/04/2023]
Abstract
The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of the magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest for four decades. A satisfactory understanding of the microscopic origin of anisotropy of the magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of the magnetoviscous effect and the underlying change in microstructures of ferrofluids. Our results indicate that field-induced chainlike structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate, and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A nonmonotonic behavior in the anisotropy of the magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of microstructure formation.
Collapse
Affiliation(s)
- Aparna Sreekumari
- Polymer Physics, Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Patrick Ilg
- Polymer Physics, Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
- Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, UK
| |
Collapse
|
21
|
Peroukidis SD, Klapp SHL. Spontaneous ordering of magnetic particles in liquid crystals: From chains to biaxial lamellae. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:010501. [PMID: 26274107 DOI: 10.1103/physreve.92.010501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Indexed: 06/04/2023]
Abstract
Using Monte Carlo computer simulations we explore the self-assembly and ordering behavior of a hybrid, soft magnetic system consisting of small magnetic nanospheres in a liquid-crystalline (LC) matrix. Inspired by recent experiments with colloidal rod matrices, we focus on conditions where the sphere and rod diameters are comparable. Already in the absence of a magnetic field, the nematic ordering of the LC can stabilize the formation of magnetic chains along the nematic or smectic director, yielding a state with local (yet no macroscopic) magnetic order. The chains, in turn, increase the overall nematic order, reflecting the complex interplay of the structure formation of the two components. When increasing the sphere diameter, the spontaneous uniaxial ordering is replaced by biaxial lamellar morphologies characterized by alternating layers of rods and magnetic chains oriented perpendicular to the rod's director. These ordering scenarios at zero field suggest a complex response of the resulting hybrid to external stimuli, such as magnetic fields and shear forces.
Collapse
Affiliation(s)
- Stavros D Peroukidis
- Institute of theoretical Physics, Secretary EW 7-1, Technical University of Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute of theoretical Physics, Secretary EW 7-1, Technical University of Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| |
Collapse
|
22
|
Townsend J, Burtovyy R, Galabura Y, Luzinov I. Flexible chains of ferromagnetic nanoparticles. ACS NANO 2014; 8:6970-6978. [PMID: 24950006 DOI: 10.1021/nn501787v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the fabrication of flexible chains of ferromagnetic Ni nanoparticles that possess the ability to adapt other than the typically observed rigid (nearly) straight configurations in the absence of an external magnetic field. The dynamic mobility of the ferromagnetic chains originates from a layer of densely grafted polyethylene glycol macromolecules enveloping each nanoparticle in the chain. While ferromagnetic chains of unmodified Ni nanoparticles behave as stiff nickel nanorods, the chains made of the grafted nanoparticles demonstrate extreme flexibility. Upon changing the direction of the field, and inevitably going through a zero-field point, the shorter chains undergo chain-globule-chain transformation. The longer chains can bend to a high degree, attaining "snake-like" configurations.
Collapse
Affiliation(s)
- James Townsend
- Department of Materials Science and Engineering, Clemson University , 161 Sirrine Hall, Clemson, South Carolina 29634, United States
| | | | | | | |
Collapse
|