1
|
Khandagale P, Garcia-Cervera C, deBotton G, Breitzman T, Majidi C, Dayal K. Statistical field theory of polarizable polymer chains with nonlocal dipolar interactions. Phys Rev E 2024; 109:044501. [PMID: 38755880 DOI: 10.1103/physreve.109.044501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 05/18/2024]
Abstract
The electromechanical response of polymeric soft matter to applied electric fields is of fundamental scientific interest as well as relevant to technologies for sensing and actuation. Several existing theoretical and numerical approaches for polarizable polymers subject to a combined applied electric field and stretch are based on discrete monomer models. In these models, accounting for the interactions between the induced dipoles on monomers is challenging due to the nonlocality of these interactions. On the other hand, the framework of statistical field theory provides a continuous description of polymer chains that potentially enables a tractable way to account for these interactions. However, prior formulations using this framework have been restricted to the case of weak anisotropy of the monomer polarizability. This paper formulates a general approach based in the framework of statistical field theory to account for the nonlocal nature of the dipolar interactions without any restrictions on the anisotropy or nonlinearity of the polarizability of the monomer. The approach is based on three key elements: (1) the statistical field theory framework, in which the discrete monomers are regularized to a continuous dipole distribution, (2) a replacement of the nonlocal dipole-dipole interactions by the local electrostatics partial differential equation with the continuous dipole distribution as the forcing, and (3) the use of a completely general relation between the polarization and the local electric field. Rather than treat the dipole-dipole interactions directly, the continuous description in the field theory enables the computationally tractable nonlocal-to-local transformation. Further, it enables the use of a realistic statistical-mechanical ensemble wherein the average far-field applied electric field is prescribed, rather than prescribing the applied field at every point in the polymer domain. The model is applied, using the finite element method, to study the electromechanical response of a polymer chain in the ensemble with fixed far-field applied electric field and fixed chain stretch. The nonlocal dipolar interactions are found to increase, over the case where dipole-dipole interactions are neglected, the magnitudes of the polarization and electric field by orders of magnitude as well as significantly change their spatial distributions. Next, the effect of the relative orientation between the applied field and the chain on the local electric field and polarization is studied. The model predicts that the elastic response of the polymer chain is linear, consistent with the Gaussian approximation, and largely unchanged by the orientation of the applied electric field, though the polarization and local electric field distributions are significantly impacted.
Collapse
Affiliation(s)
- Pratik Khandagale
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
| | - Carlos Garcia-Cervera
- Department of Mathematics, University of California, Santa Barbara CA 93106, USA
- BCAM, Basque Center for Applied Mathematics, E48009 Bilbao, Basque Country, Spain
| | - Gal deBotton
- Department of Mechanical Engineering, Ben Gurion University, 84105 Beer Sheva, Israel
- Department of Biomedical Engineering, Ben Gurion University, 84105 Beer Sheva, Israel
| | | | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
| | - Kaushik Dayal
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Center for Nonlinear Analysis, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA
| |
Collapse
|
2
|
Dermal white adipose tissue: Much more than a metabolic, lipid-storage organ? Tissue Cell 2021; 71:101583. [PMID: 34171520 DOI: 10.1016/j.tice.2021.101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The role of dermal white adipose tissue (dWAT) has emerged in the biomedical science as an ancillary fat district in the derma without a defined and distinct function respect to the subcutaneous adipose tissue (sWAT). Despite some evidence describing dWAT as an immune-competent compartment, particularly engaged in wound repair, very few reports dealing with dWAT has elucidated its major modulatory role within the skin biology. Whereas an increasing bulk of evidence allows researcher to describe the main activity of sWAT, in humans dWAT is not properly a separated fat compartment and therefore scarcely considered in the scientific debate. Due to its strategic position between epidermis and sWAT, dermal fat might play a much more intriguing role than expected. This review tries to shed light on this issue, by expanding the debate about a possible role of dWAT in skin physiology.
Collapse
|
3
|
Saadeh M, Frère P, Guiffard B. Revealing the flexoelectric‐like response of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) thin films. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maria Saadeh
- MOLTECH‐Anjou UMR CNRS 6200 Université d'Angers Angers France
- IETR UMR CNRS 6164 Université de Nantes Nantes Cedex 3 France
| | - Pierre Frère
- MOLTECH‐Anjou UMR CNRS 6200 Université d'Angers Angers France
| | - Benoit Guiffard
- IETR UMR CNRS 6164 Université de Nantes Nantes Cedex 3 France
| |
Collapse
|
4
|
Jerusalem A, Al-Rekabi Z, Chen H, Ercole A, Malboubi M, Tamayo-Elizalde M, Verhagen L, Contera S. Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomater 2019; 97:116-140. [PMID: 31357005 DOI: 10.1016/j.actbio.2019.07.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
The current understanding of the role of the cell membrane is in a state of flux. Recent experiments show that conventional models, considering only electrophysiological properties of a passive membrane, are incomplete. The neuronal membrane is an active structure with mechanical properties that modulate electrophysiology. Protein transport, lipid bilayer phase, membrane pressure and stiffness can all influence membrane capacitance and action potential propagation. A mounting body of evidence indicates that neuronal mechanics and electrophysiology are coupled, and together shape the membrane potential in tight coordination with other physical properties. In this review, we summarise recent updates concerning electrophysiological-mechanical coupling in neuronal function. In particular, we aim at making the link with two relevant yet often disconnected fields with strong clinical potential: the use of mechanical vibrations-ultrasound-to alter the electrophysiogical state of neurons, e.g., in neuromodulation, and the theories attempting to explain the action of general anaesthetics. STATEMENT OF SIGNIFICANCE: General anaesthetics revolutionised medical practice; now an apparently unrelated technique, ultrasound neuromodulation-aimed at controlling neuronal activity by means of ultrasound-is poised to achieve a similar level of impact. While both technologies are known to alter the electrophysiology of neurons, the way they achieve it is still largely unknown. In this review, we argue that in order to explain their mechanisms/effects, the neuronal membrane must be considered as a coupled mechano-electrophysiological system that consists of multiple physical processes occurring concurrently and collaboratively, as opposed to sequentially and independently. In this framework the behaviour of the cell membrane is not the result of stereotypical mechanisms in isolation but instead emerges from the integrative behaviour of a complexly coupled multiphysics system.
Collapse
Affiliation(s)
- Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| | - Zeinab Al-Rekabi
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Haoyu Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK; WIN, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Sonia Contera
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
5
|
Wen X, Li D, Tan K, Deng Q, Shen S. Flexoelectret: An Electret with a Tunable Flexoelectriclike Response. PHYSICAL REVIEW LETTERS 2019; 122:148001. [PMID: 31050447 DOI: 10.1103/physrevlett.122.148001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Because of the flexoelectric effect, dielectric materials usually polarize in response to a strain gradient. Soft materials are good candidates for developing a large strain gradient because of their good deformability. However, they always suffer from lower flexoelectric coefficients compared to ceramics. In this work, a flexoelectriclike effect is introduced to enhance the effective flexoelectricity of a polydimethylsiloxane bar. The flexoelectriclike effect is realized by depositing a layer of net charges on the middle plane of the bar to form an electret. Experiments show that the enhancement of flexoelectricity depends on the density of inserted net charges. It is found that a charged layer with surface potential of -5723 V results in a 100 times increase of the material's flexoelectric coefficient. We also show that the enhancement is proportional to the thickness of electrets. This work provides a new way of enhancing flexoelectricity in soft materials and further prompts the application of soft materials in electromechanical transducers.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongfan Li
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Kai Tan
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Deng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengping Shen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Rahmati AH, Yang S, Bauer S, Sharma P. Nonlinear bending deformation of soft electrets and prospects for engineering flexoelectricity and transverse (d 31) piezoelectricity. SOFT MATTER 2018; 15:127-148. [PMID: 30539952 DOI: 10.1039/c8sm01664j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soft materials that exhibit electromechanical coupling are an important element in the development of soft robotics, flexible and stretchable electronics, energy harvesters, sensor and actuators. Truly soft natural piezoelectrics essentially do not exist and typical dielectric elastomers, predicated on electrostriction and the Maxwell stress effect, exhibit only a one-way electromechanical coupling. Extensive research however has shown that soft electrets i.e. materials with embedded immobile charges and dipoles, can be artificially engineered to exhibit a rather large piezoelectric-like effect. Unfortunately, this piezoelectric effect-large as it may be-is primarily restricted to an electromechanical coupling in the longitudinal direction or what is referred colloquially as the d33 piezoelectric coefficient. In sharp contrast, the transverse piezoelectric property (the so-called d31 coefficient) is rather small. This distinction has profound implications since these soft electrets exhibit negligible electromechanical coupling under bending deformation. As a result, the typically engineered soft electrets are rendered substantively ill-suited for energy harvesting as well as actuation/sensing of flexure motion that plays a critical role in applications like soft robotics. In this work, we analyze nonlinear bending deformation of a soft electret structure and examine the precise conditions that may lead to a strong emergent piezoelectric response under bending. Furthermore, we show that non-uniformly distributed dipoles and charges in the soft electrets lead to an apparent electromechanical response that may be ambiguously and interchangeably interpreted as either transverse piezoelectricity or flexoelectricity. We suggest pragmatic routes to engineer a large transverse piezoelectric (d31) and flexoelectric coefficient in soft electrets. Finally, we show that in an appropriately designed soft electret, even a uniform external electric field can induce curvature in the structure thus enabling its application as a bending actuator.
Collapse
Affiliation(s)
- Amir Hossein Rahmati
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA.
| | - Shengyou Yang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA.
| | - Siegfried Bauer
- Department of Soft Matter Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Pradeep Sharma
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA. and Department of Physics, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
7
|
Zhang Y, Xie M, Adamaki V, Khanbareh H, Bowen CR. Control of electro-chemical processes using energy harvesting materials and devices. Chem Soc Rev 2018; 46:7757-7786. [PMID: 29125613 DOI: 10.1039/c7cs00387k] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Energy harvesting is a topic of intense interest that aims to convert ambient forms of energy such as mechanical motion, light and heat, which are otherwise wasted, into useful energy. In many cases the energy harvester or nanogenerator converts motion, heat or light into electrical energy, which is subsequently rectified and stored within capacitors for applications such as wireless and self-powered sensors or low-power electronics. This review covers the new and emerging area that aims to directly couple energy harvesting materials and devices with electro-chemical systems. The harvesting approaches to be covered include pyroelectric, piezoelectric, triboelectric, flexoelectric, thermoelectric and photovoltaic effects. These are used to influence a variety of electro-chemical systems such as applications related to water splitting, catalysis, corrosion protection, degradation of pollutants, disinfection of bacteria and material synthesis. Comparisons are made between the range harvesting approaches and the modes of operation are described. Future directions for the development of electro-chemical harvesting systems are highlighted and the potential for new applications and hybrid approaches are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Materials and Structures Centre, Department of Mechanical Engineering, University of Bath, BA1 7AY, UK.
| | | | | | | | | |
Collapse
|
8
|
Freeman EC, Najem JS, Sukharev S, Philen MK, Leo DJ. The mechanoelectrical response of droplet interface bilayer membranes. SOFT MATTER 2016; 12:3021-3031. [PMID: 26905644 DOI: 10.1039/c5sm02779a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mechanotransduction and interfacial properties in unsupported liquid biomimetic membranes are explored using the droplet-interface bilayer technique. The fluidic monolayer-membrane system afforded by this technique allows for dynamic control over the membrane dimensions and curvature, which under periodic deformations generates capacitive currents (akin to a Kelvin probe), and permits a detailed electrostatic characterization of the boundary layers as well as observation of flexoelectric effects. Both high and low displacement frequency regimes are examined, and the results show that the mechanoelectric signals generated by the membranes may be linked to the membrane electrostatic structure. In addition, we show that periodic membrane bending in a high-frequency regime generates tension sufficient to activate reconstituted mechanosensitive channels.
Collapse
Affiliation(s)
- E C Freeman
- College of Engineering, University of Georgia, USA.
| | - J S Najem
- Department of Mechanical Engineering, Virginia Tech, USA
| | - S Sukharev
- Department of Biology, University of Maryland, USA
| | - M K Philen
- Department of Aerospace and Ocean Engineering, Virginia Tech, USA
| | - D J Leo
- College of Engineering, University of Georgia, USA.
| |
Collapse
|
9
|
Ahmadpoor F, Sharma P. Flexoelectricity in two-dimensional crystalline and biological membranes. NANOSCALE 2015; 7:16555-16570. [PMID: 26399878 DOI: 10.1039/c5nr04722f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes-whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others.
Collapse
Affiliation(s)
- Fatemeh Ahmadpoor
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA.
| | | |
Collapse
|
10
|
Mosgaard LD, Zecchi KA, Heimburg T. Mechano-capacitive properties of polarized membranes. SOFT MATTER 2015; 11:7899-7910. [PMID: 26324950 DOI: 10.1039/c5sm01519g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is quadratic in voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However, this is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called 'flexoelectricity'. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. Here, we introduce a generalized theoretical framework, that treats capacitance, polarization, flexoelectricity, piezoelectricity and thermoelectricity in the same language. We show applications to electrostriction, membrane permeability and piezoelectricity and thermoelectricity close to melting transitions, where such effects are especially pronounced.
Collapse
Affiliation(s)
- Lars D Mosgaard
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|