1
|
Tiana-Alsina J, Quintero-Quiroz C, Panozzo M, Torrent MC, Masoller C. Experimental study of modulation waveforms for entraining the spikes emitted by a semiconductor laser with optical feedback. OPTICS EXPRESS 2018; 26:9298-9309. [PMID: 29715883 DOI: 10.1364/oe.26.009298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The entrainment phenomenon, by which an oscillator adjusts its natural rhythm to an external periodic signal, has been observed in many natural systems. Recently, attention has focused on which are the optimal conditions for achieving entrainment. Here we use a semiconductor laser with optical feedback, operating in the low-frequency fluctuations (LFFs) regime, as a testbed for a controlled entrainment experiment. In the LFF regime the laser intensity displays abrupt spikes, which can be entrained to a weak periodic signal that directly modulates the laser pump current. We compare the performance of three modulation waveforms for producing 1:1 locking (one spike is emitted in each modulation cycle), as well as higher order locking regimes. We characterize the parameter regions where high-quality locking occurs, and those where the laser emits spikes which are not entrained to the external signal. The role of the modulation amplitude and frequency, and the role of the dc value of the laser pump current (that controls the natural spike frequency) in the entrainment quality are discussed.
Collapse
|
2
|
Hicke K, Brunner D, Soriano MC, Fischer I. Role of dynamical injection locking and characteristic pulse events for low frequency fluctuations in semiconductor lasers. CHAOS (WOODBURY, N.Y.) 2017; 27:114307. [PMID: 29195304 DOI: 10.1063/1.5006945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the dynamics of semiconductor lasers subject to time-delayed optical feedback from the perspective of dynamical self-injection locking. Based on the Lang-Kobayashi model, we perform an analysis of the well-known Low Frequency Fluctuations (LFFs) in the frequency-intensity plane. Moreover, we investigate a recently found dynamical regime of fragmented LFFs by means of a locking-range analysis, spectral comparison and precursor pulse identification. We show that LFF dynamics can be explained by dynamical optical injection locking due to the delayed optical feedback. Moreover, the fragmented LFFs occur due to a re-injection locking induced by a particular optical pulse structure in the chaotic feedback dynamics. This is corroborated by experiments with a semiconductor laser experiencing delayed feedback from an optical fiber loop. The dynamical nature of the feedback injection results in an eventual loss, but also possible regaining, of the locking, explaining the recently observed phenomenon of fragmented LFFs.
Collapse
Affiliation(s)
- K Hicke
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - D Brunner
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - M C Soriano
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - I Fischer
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
3
|
Quintero-Quiroz C, Tiana-Alsina J, Romà J, Torrent MC, Masoller C. Quantitative identification of dynamical transitions in a semiconductor laser with optical feedback. Sci Rep 2016; 6:37510. [PMID: 27857229 PMCID: PMC5114591 DOI: 10.1038/srep37510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022] Open
Abstract
Identifying transitions to complex dynamical regimes is a fundamental open problem with many practical applications. Semi- conductor lasers with optical feedback are excellent testbeds for studying such transitions, as they can generate a rich variety of output signals. Here we apply three analysis tools to quantify various aspects of the dynamical transitions that occur as the laser pump current increases. These tools allow to quantitatively detect the onset of two different regimes, low-frequency fluctuations and coherence collapse, and can be used for identifying the operating conditions that result in specific dynamical properties of the laser output. These tools can also be valuable for analyzing regime transitions in other complex systems.
Collapse
Affiliation(s)
- C. Quintero-Quiroz
- Universitat Politècnica de Catalunya, Departament de Física, Colom 11, 08222 Terrassa, Barcelona, Spain
| | - J. Tiana-Alsina
- Universitat Politècnica de Catalunya, Departament de Física, Colom 11, 08222 Terrassa, Barcelona, Spain
| | - J. Romà
- Universitat Politècnica de Catalunya, Departament de Física, Colom 11, 08222 Terrassa, Barcelona, Spain
| | - M. C. Torrent
- Universitat Politècnica de Catalunya, Departament de Física, Colom 11, 08222 Terrassa, Barcelona, Spain
| | - C. Masoller
- Universitat Politècnica de Catalunya, Departament de Física, Colom 11, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
4
|
Sorrentino T, Quintero-Quiroz C, Aragoneses A, Torrent MC, Masoller C. Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback. OPTICS EXPRESS 2015; 23:5571-5581. [PMID: 25836789 DOI: 10.1364/oe.23.005571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Optical excitable devices that mimic neuronal behavior can be building-blocks of novel, brain-inspired information processing systems. A relevant issue is to understand how such systems represent, via correlated spikes, the information of a weak external input. Semiconductor lasers with optical feedback operating in the low frequency fluctuations regime have been shown to display optical spikes with intrinsic temporal correlations similar to those of biological neurons. Here we investigate how the spiking laser output represents a weak periodic input that is implemented via direct modulation of the laser pump current. We focus on understanding the influence of the modulation frequency. Experimental sequences of inter-spike-intervals (ISIs) are recorded and analyzed by using the ordinal symbolic methodology that identifies and characterizes serial correlations in datasets. The change in the statistics of the various symbols with the modulation frequency is empirically shown to be related to specific changes in the ISI distribution, which arise due to different phase-locking regimes. A good qualitative agreement is also found between simulations of the Lang and Kobayashi model and observations. This methodology is an efficient way to detect subtle changes in noisy correlated ISI sequences and may be applied to investigate other optical excitable devices.
Collapse
|
5
|
Aragoneses A, Perrone S, Sorrentino T, Torrent MC, Masoller C. Unveiling the complex organization of recurrent patterns in spiking dynamical systems. Sci Rep 2014; 4:4696. [PMID: 24732050 PMCID: PMC3986700 DOI: 10.1038/srep04696] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/31/2014] [Indexed: 11/17/2022] Open
Abstract
Complex systems displaying recurrent spike patterns are ubiquitous in nature. Understanding the organization of these patterns is a challenging task. Here we study experimentally the spiking output of a semiconductor laser with feedback. By using symbolic analysis we unveil a nontrivial organization of patterns, revealing serial spike correlations. The probabilities of the patterns display a well-defined, hierarchical and clustered structure that can be understood in terms of a delayed model. Most importantly, we identify a minimal model, a modified circle map, which displays the same symbolic organization. The validity of this minimal model is confirmed by analyzing the output of the forced laser. Since the circle map describes many dynamical systems, including neurons and cardiac cells, our results suggest that similar correlations and hierarchies of patterns can be found in other systems. Our findings also pave the way for optical neurons that could provide a controllable set up to mimic neuronal activity.
Collapse
Affiliation(s)
- Andrés Aragoneses
- Departament de Física i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Colom 11, Terrassa, 08222 Barcelona, Spain
| | - Sandro Perrone
- Departament de Física i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Colom 11, Terrassa, 08222 Barcelona, Spain
| | - Taciano Sorrentino
- 1] Departament de Física i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Colom 11, Terrassa, 08222 Barcelona, Spain [2] Departamento de Ciências Exatas e Naturais, Universidade Federal Rural do Semi-Árido, 59625-900 Mossoró, RN, Brazil
| | - M C Torrent
- Departament de Física i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Colom 11, Terrassa, 08222 Barcelona, Spain
| | - Cristina Masoller
- Departament de Física i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Colom 11, Terrassa, 08222 Barcelona, Spain
| |
Collapse
|
6
|
Aragoneses A, Sorrentino T, Perrone S, Gauthier DJ, Torrent MC, Masoller C. Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser. OPTICS EXPRESS 2014; 22:4705-4713. [PMID: 24663789 DOI: 10.1364/oe.22.004705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study the symbolic dynamics of a stochastic excitable optical system with periodic forcing. Specifically, we consider a directly modulated semiconductor laser with optical feedback in the low frequency fluctuations (LFF) regime. We use a method of symbolic time-series analysis that allows us to uncover serial correlations in the sequence of intensity dropouts. By transforming the sequence of inter-dropout intervals into a sequence of symbolic patterns and analyzing the statistics of the patterns, we unveil correlations among several consecutive dropouts and we identify clear changes in the dynamics as the modulation amplitude increases. To confirm the robustness of the observations, the experiments were performed using two lasers under different feedback conditions. Simulations of the Lang-Kobayashi (LK) model, including spontaneous emission noise, are found to be in good agreement with the observations, providing an interpretation of the correlations present in the dropout sequence as due to the interplay of the underlying attractor topology, the external forcing, and the noise that sustains the dropout events.
Collapse
|