1
|
Yada T, Yoshioka N, Sagawa T. Quantum Fluctuation Theorem under Quantum Jumps with Continuous Measurement and Feedback. PHYSICAL REVIEW LETTERS 2022; 128:170601. [PMID: 35570443 DOI: 10.1103/physrevlett.128.170601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
While the fluctuation theorem in classical systems has been thoroughly generalized under various feedback control setups, an intriguing situation in quantum systems, namely under continuous feedback, remains to be investigated. In this work, we derive the generalized fluctuation theorem under quantum jumps with continuous measurement and feedback. The essence for the derivation is to newly introduce the operationally meaningful information, which we call quantum-classical-transfer (QC-transfer) entropy. QC-transfer entropy can be naturally interpreted as the quantum counterpart of transfer entropy that is commonly used in classical time series analysis. We also verify our theoretical results by numerical simulation and propose an experiment-numerics hybrid verification method. Our work reveals a fundamental connection between quantum thermodynamics and quantum information, which can be experimentally tested with artificial quantum systems such as circuit quantum electrodynamics.
Collapse
Affiliation(s)
- Toshihiro Yada
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuyuki Yoshioka
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Loos SAM, Hermann S, Klapp SHL. Medium Entropy Reduction and Instability in Stochastic Systems with Distributed Delay. ENTROPY (BASEL, SWITZERLAND) 2021; 23:696. [PMID: 34073091 PMCID: PMC8229647 DOI: 10.3390/e23060696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Many natural and artificial systems are subject to some sort of delay, which can be in the form of a single discrete delay or distributed over a range of times. Here, we discuss the impact of this distribution on (thermo-)dynamical properties of time-delayed stochastic systems. To this end, we study a simple classical model with white and colored noise, and focus on the class of Gamma-distributed delays which includes a variety of distinct delay distributions typical for feedback experiments and biological systems. A physical application is a colloid subject to time-delayed feedback control, which is, in principle, experimentally realizable by co-moving optical traps. We uncover several unexpected phenomena in regard to the system's linear stability and its thermodynamic properties. First, increasing the mean delay time can destabilize or stabilize the process, depending on the distribution of the delay. Second, for all considered distributions, the heat dissipated by the controlled system (e.g., the colloidal particle) can become negative, which implies that the delay force extracts energy and entropy of the bath. As we show here, this refrigerating effect is particularly pronounced for exponential delay. For a specific non-reciprocal realization of a control device, we find that the entropic costs, measured by the total entropy production of the system plus controller, are the lowest for exponential delay. The exponential delay further yields the largest stable parameter regions. In this sense, exponential delay represents the most effective and robust type of delayed feedback.
Collapse
Affiliation(s)
- Sarah A. M. Loos
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany;
- ICTP—The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Institut für Theoretische Physik, Universität Leipzig, Brüderstraße 15, 04103 Leipzig, Germany
| | - Simon Hermann
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany;
| | - Sabine H. L. Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany;
| |
Collapse
|
3
|
Strasberg P, Winter A. Stochastic thermodynamics with arbitrary interventions. Phys Rev E 2019; 100:022135. [PMID: 31574732 DOI: 10.1103/physreve.100.022135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 06/10/2023]
Abstract
We extend the theory of stochastic thermodynamics in three directions: (i) instead of a continuously monitored system we consider measurements only at an arbitrary set of discrete times, (ii) we allow for imperfect measurements and incomplete information in the description, and (iii) we treat arbitrary manipulations (e.g., feedback control operations) which are allowed to depend on the entire measurement record. For this purpose we define for a driven system in contact with a single heat bath the four key thermodynamic quantities-internal energy, heat, work, and entropy-along a single "trajectory" for a causal model. The first law at the trajectory level and the second law on average is verified. We highlight the special case of Bayesian or "bare" measurements (incomplete information, but no average disturbance) which allows us to compare our theory with the literature and to derive a general inequality for the estimated free energy difference in Jarzynski-type experiments. An analysis of a recent Maxwell demon experiment using real-time feedback control is also given. As a mathematical tool, we prove a classical version of Stinespring's dilation theorem, which might be of independent interest.
Collapse
Affiliation(s)
- Philipp Strasberg
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Andreas Winter
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
|
5
|
Esposito M, Ochoa MA, Galperin M. Quantum thermodynamics: a nonequilibrium Green's function approach. PHYSICAL REVIEW LETTERS 2015; 114:080602. [PMID: 25768745 DOI: 10.1103/physrevlett.114.080602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 06/04/2023]
Abstract
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.
Collapse
Affiliation(s)
- Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Maicol A Ochoa
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla California 92093, USA
| | - Michael Galperin
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla California 92093, USA
| |
Collapse
|
6
|
Strasberg P, Schaller G, Brandes T, Jarzynski C. Second laws for an information driven current through a spin valve. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062107. [PMID: 25615044 DOI: 10.1103/physreve.90.062107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 06/04/2023]
Abstract
We propose a physically realizable Maxwell's demon device using a spin valve interacting unitarily for a short time with electrons placed on a tape of quantum dots, which is thermodynamically equivalent to the device introduced by Mandal and Jarzynski [D. Mandal and C. Jarzynski, Proc. Natl. Acad. Sci. USA 109, 11641 (2012)]. The model is exactly solvable and we show that it can be equivalently interpreted as a Brownian ratchet demon. We then consider a measurement-based discrete feedback scheme, which produces identical system dynamics, but possesses a different second law inequality. We show that the second law for discrete feedback control can provide a smaller, equal, or larger bound on the maximum extractable work as compared to the second law involving the tape of bits. Finally, we derive an effective master equation governing the system evolution for Poisson distributed bits on the tape (or measurement times, respectively) and we show that its associated entropy production rate contains the same physical statement as the second law involving the tape of bits.
Collapse
Affiliation(s)
- Philipp Strasberg
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Gernot Schaller
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Tobias Brandes
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| | - Christopher Jarzynski
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
7
|
Barato AC, Seifert U. Stochastic thermodynamics with information reservoirs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042150. [PMID: 25375481 DOI: 10.1103/physreve.90.042150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 05/10/2023]
Abstract
We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs, which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of stochastic thermodynamics. From this inequality we can derive an information processing entropy production, which gives the second law in the presence of information reservoirs. We also develop a systematic linear response theory for information processing machines. For a unicyclic machine powered by an information reservoir, the efficiency at maximum power can deviate from the standard value of 1/2. For the case where energy is consumed to erase the tape, the efficiency at maximum erasure rate is found to be 1/2.
Collapse
Affiliation(s)
- Andre C Barato
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|