1
|
Maire R, Plati A, Stockinger M, Trizac E, Smallenburg F, Foffi G. Interplay between an Absorbing Phase Transition and Synchronization in a Driven Granular System. PHYSICAL REVIEW LETTERS 2024; 132:238202. [PMID: 38905681 DOI: 10.1103/physrevlett.132.238202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 06/23/2024]
Abstract
Absorbing phase transitions (APTs) are widespread in nonequilibrium systems, spanning condensed matter, epidemics, earthquakes, ecology, and chemical reactions. APTs feature an absorbing state in which the system becomes entrapped, along with a transition, either continuous or discontinuous, to an active state. Understanding which physical mechanisms determine the order of these transitions represents a challenging open problem in nonequilibrium statistical mechanics. Here, by numerical simulations and mean-field analysis, we show that a quasi-2D vibrofluidized granular system exhibits a novel form of APT. The absorbing phase is observed in the horizontal dynamics below a critical packing fraction, and can be continuous or discontinuous based on the emergent degree of synchronization in the vertical motion. Our results provide a direct representation of a feasible experimental scenario, showcasing a surprising interplay between dynamic phase transition and synchronization.
Collapse
Affiliation(s)
- R Maire
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - A Plati
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - M Stockinger
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam, Germany
| | - E Trizac
- LPTMS, UMR 8626, CNRS, Université Paris-Saclay, 91405 Orsay, France
- Ecole normale supérieure de Lyon, F-69364 Lyon, France
| | - F Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - G Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
2
|
Garzó V, Brito R, Soto R. Stability of the homogeneous steady state for a model of a confined quasi-two-dimensional granular fluid. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124904005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A linear stability analysis of the hydrodynamic equations of a model for confined quasi-two-dimensional granular gases is carried out. The stability analysis is performed around the homogeneous steady state (HSS) reached eventually by the system after a transient regime. In contrast to previous studies (which considered dilute or quasielastic systems), our analysis is based on the results obtained from the inelastic Enskog kinetic equation, which takes into account the (nonlinear) dependence of the transport coefficients and the cooling rate on dissipation and applies to moderate densities. As in earlier studies, the analysis shows that the HSS is linearly stable with respect to long enough wavelength excitations.
Collapse
|
3
|
Brito R, Soto R, Garzó V. Energy nonequipartition in a collisional model of a confined quasi-two-dimensional granular mixture. Phys Rev E 2020; 102:052904. [PMID: 33327089 DOI: 10.1103/physreve.102.052904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 11/07/2022]
Abstract
A collisional model of a confined quasi-two-dimensional granular mixture is considered to analyze homogeneous steady states. The model includes an effective mechanism to transfer the kinetic energy injected by vibration in the vertical direction to the horizontal degrees of freedom of grains. The set of Enskog kinetic equations for the velocity distribution functions of each component is derived first to analyze the homogeneous state. As in the one-component case, an exact scaling solution is found where the time dependence of the distribution functions occurs entirely through the granular temperature T. As expected, the kinetic partial temperatures T_{i} of each component are different and, hence, energy equipartition is broken down. In the steady state, explicit expressions for the temperature T and the ratio of partial kinetic temperatures T_{i}/T_{j} are obtained by considering Maxwellian distributions defined at the partial temperatures T_{i}. The (scaled) granular temperature and the temperature ratios are given in terms of the coefficients of restitution, the solid volume fraction, the (scaled) parameters of the collisional model, and the ratios of mass, concentration, and diameters. In the case of a binary mixture, the theoretical predictions are exhaustively compared with both direct simulation Monte Carlo and molecular dynamics simulations with a good agreement. The deviations are identified to be originated in the non-Gaussianity of the velocity distributions and on microsegregation patterns, which induce spatial correlations not captured in the Enskog theory.
Collapse
Affiliation(s)
- Ricardo Brito
- Departamento de Estructura de la Materia, Física Térmica y Electrónica and GISC, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rodrigo Soto
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
| | - Vicente Garzó
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEX), Universidad de Extremadura, E-06071 Badajoz, Spain
| |
Collapse
|
4
|
|
5
|
Brey JJ, Maynar P, García de Soria MI. Kinetic equation and nonequilibrium entropy for a quasi-two-dimensional gas. Phys Rev E 2016; 94:040103. [PMID: 27841642 DOI: 10.1103/physreve.94.040103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 06/06/2023]
Abstract
A kinetic equation for a dilute gas of hard spheres confined between two parallel plates separated a distance smaller than two particle diameters is derived. It is a Boltzmann-like equation, which incorporates the effect of the confinement on the particle collisions. A function S(t) is constructed by adding to the Boltzmann expression a confinement contribution. Then it is shown that for the solutions of the kinetic equation, S(t) increases monotonically in time, until the system reaches a stationary inhomogeneous state, when S becomes the equilibrium entropy of the confined system as derived from equilibrium statistical mechanics. From the entropy, other equilibrium properties are obtained, and molecular dynamics simulations are used to verify some of the theoretical predictions.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - Pablo Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
6
|
Brey JJ, Buzón V, García de Soria MI, Maynar P. Stability analysis of the homogeneous hydrodynamics of a model for a confined granular gas. Phys Rev E 2016; 93:062907. [PMID: 27415347 DOI: 10.1103/physreve.93.062907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 06/06/2023]
Abstract
The linear hydrodynamic stability of a model for confined quasi-two-dimensional granular gases is analyzed. The system exhibits homogeneous hydrodynamics, i.e., there are macroscopic evolution equations for homogeneous states. The stability analysis is carried out around all these states and not only the homogeneous steady state reached eventually by the system. It is shown that in some cases the linear analysis is not enough to reach a definite conclusion on the stability, and molecular dynamics simulation results are presented to elucidate these cases. The analysis shows the relevance of nonlinear hydrodynamic contributions to describe the behavior of spontaneous fluctuations occurring in the system, that lead even to the transitory formation of clusters of particles. The conclusion is that the system is always stable. The relevance of the results for describing the instabilities of confined granular gases observed experimentally is discussed.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|
7
|
Brey JJ, Buzón V, Maynar P, García de Soria MI. Hydrodynamics for a model of a confined quasi-two-dimensional granular gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052201. [PMID: 26066167 DOI: 10.1103/physreve.91.052201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 06/04/2023]
Abstract
The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity parameter involved in the definition of the model. Also an Euler transport term contributing to the energy transport equation is considered. This term arises from the gradient expansion of the rate of change of the temperature due to the inelasticity of collisions, and it vanishes for elastic systems. The hydrodynamic equations are particularized for the relevant case of a system in the homogeneous steady state. The relationship with previous works is analyzed.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|
8
|
Soto R, Risso D, Brito R. Shear viscosity of a model for confined granular media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062204. [PMID: 25615082 DOI: 10.1103/physreve.90.062204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 06/04/2023]
Abstract
The shear viscosity in the dilute regime of a model for confined granular matter is studied by simulations and kinetic theory. The model consists on projecting into two dimensions the motion of vibrofluidized granular matter in shallow boxes by modifying the collision rule: besides the restitution coefficient that accounts for the energy dissipation, there is a separation velocity that is added in each collision in the normal direction. The two mechanisms balance on average, producing stationary homogeneous states. Molecular dynamics simulations show that in the steady state the distribution function departs from a Maxwellian, with cumulants that remain small in the whole range of inelasticities. The shear viscosity normalized with stationary temperature presents a clear dependence with the inelasticity, taking smaller values compared to the elastic case. A Boltzmann-like equation is built and analyzed using linear response theory. It is found that the predictions show an excellent agreement with the simulations when the correct stationary distribution is used but a Maxwellian approximation fails in predicting the inelasticity dependence of the viscosity. These results confirm that transport coefficients depend strongly on the mechanisms that drive them to stationary states.
Collapse
Affiliation(s)
- Rodrigo Soto
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Dino Risso
- Departamento de Física, Universidad del Bío-Bío, Concepción, Chile
| | - Ricardo Brito
- Departamento de Física Aplicada I (Termología), Universidad Complutense de Madrid, Spain
| |
Collapse
|
9
|
Brey JJ, de Soria MIG, Maynar P, Buzón V. Memory effects in the relaxation of a confined granular gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032207. [PMID: 25314437 DOI: 10.1103/physreve.90.032207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 06/04/2023]
Abstract
The accuracy of a model to describe the horizontal dynamics of a confined quasi-two-dimensional system of inelastic hard spheres is discussed by comparing its predictions for the relaxation of the temperature in a homogenous system with molecular dynamics simulation results for the original system. A reasonably good agreement is found. Next the model is used to investigate the peculiarities of the nonlinear evolution of the temperature when the parameter controlling the energy injection is instantaneously changed while the system was relaxing. This can be considered as a nonequilibrium generalization of the Kovacs effect. It is shown that, in the low-density limit, the effect can be accurately described by using a simple kinetic theory based on the first Sonine approximation for the one-particle distribution function. Some possible experimental implications are indicated.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|
10
|
Brey JJ, Maynar P, García de Soria MI, Buzón V. Homogeneous hydrodynamics of a collisional model of confined granular gases. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052209. [PMID: 25353789 DOI: 10.1103/physreve.89.052209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 06/04/2023]
Abstract
The hydrodynamic equation governing the homogeneous time evolution of the temperature in a model of confined granular gas is studied by means of the Enskog equation. The existence of a normal solution of the kinetic equation is assumed as a condition for hydrodynamics. Dimensional analysis implies a scaling of the distribution function that is used to determine it in the first Sonine approximation, with a coefficient that evolves in time through its dependence on the temperature. The theoretical predictions are compared to numerical results obtained by the direct simulation Monte Carlo method and a good agreement is found. The relevance of the normal homogeneous distribution function to derive inhomogeneous hydrodynamic equations, for instance using the Champan-Enskog algorithm, is indicated.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - P Maynar
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - M I García de Soria
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - V Buzón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
11
|
Khalil N, Garzó V. Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations. J Chem Phys 2014; 140:164901. [DOI: 10.1063/1.4871628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|