1
|
Huang Q, Chen K, Liu C, Liu G, Shao Y, Zhao C, Chen R, Bu H, Kong L, Shen Y. Strain-dependent evolution of avalanche dynamics in bulk metallic glass. Phys Rev E 2025; 111:025410. [PMID: 40103154 DOI: 10.1103/physreve.111.025410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025]
Abstract
Avalanche phenomena characterized by power-law scaling are observed in amorphous solids and many other nonequilibrium systems during their deformation. Avalanches in these systems often exhibit scale invariance, a feature reminiscent of critical phenomena and universality classes, although their fundamental nature remains unclear. In this paper, we use in situ acoustic emission techniques to experimentally investigate the characteristics and evolution of avalanches during the deformation process of bulk metallic glass (BMG), a representative amorphous solid. We observed abundant avalanche events from the microplastic deformation region to the failure of the sample. We find that avalanches are power-law distributed with an exponent decreasing from 1.61 to 1.49 with increasing deformation throughout the tensile experiment. By quantitatively analyzing the strong strain dependence of various avalanche characteristics, we highlight the importance of additional coefficients that complete the widely studied finite size scaling description of avalanche dynamics and revealed a strain-mediated avalanche scaling mechanism. Through surface morphology analysis and spectral analysis of avalanche signals in BMG samples, we conclude that the underlying process of these avalanches are not macroscopic, such as cracks and large shear band propagation, but is instead related to nanoscale microstructural adjustments. Our results encourage further exploration into the microscopic origins of avalanches and suggest that theoretical frameworks beyond finite-size scaling merit more in-depth investigations.
Collapse
Affiliation(s)
- Qi Huang
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Kaiguo Chen
- National University of Defense Technology, College of Science, Changsha, Hunan 410073, China
| | - Chen Liu
- Innovation and Research Division, Ge-Room, Inc., 93160 Noisy le Grand, France
| | - Guisen Liu
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Yang Shao
- Tsinghua University, School of Materials Science and Engineering, Beijing 100084, China
| | - Chenlong Zhao
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Ran Chen
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Hengtong Bu
- Tsinghua University, School of Materials Science and Engineering, Beijing 100084, China
| | - Lingti Kong
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| | - Yao Shen
- Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai 200240, China
| |
Collapse
|
2
|
Jocteur T, Bertin E, Mari R, Martens K. Protocol dependence for avalanches under constant stress in elastoplastic models. Phys Rev E 2025; 111:024101. [PMID: 40103142 DOI: 10.1103/physreve.111.024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/05/2024] [Indexed: 03/20/2025]
Abstract
Close to the yielding transition, amorphous solids exhibit a jerky dynamics characterized by plastic avalanches. The statistics of these avalanches have been measured experimentally and numerically using a variety of different triggering protocols, assuming that all of them were equivalent for this purpose. In particular, two main classes of protocols have been studied, deformation under controlled strain or under controlled stress. In this work, we investigate different protocols to generate plasticity avalanches and conduct two-dimensional simulations of an elastoplastic model to examine the protocol dependence of avalanche statistics in yield-stress fluids. We demonstrate that when stress is controlled, the value and even the existence of the exponent governing the probability distribution function of avalanche sizes strongly depend on the protocol chosen to initiate avalanches. This confirms in finite dimension a scenario presented in a previous mean-field analysis. We identify a consistent stress-controlled protocol whose associated avalanches differ from the quasi-static ones in their fractal dimension and dynamical exponent. Remarkably, this protocol also seems to satisfy the scaling relations among exponents previously proposed. Our results underscore the necessity for a cautious interpretation of avalanche universality within elastoplastic models, and more generally within systems where several control parameters exist.
Collapse
Affiliation(s)
| | - Eric Bertin
- LIPhy, Univ. Grenoble-Alpes, CNRS, 38000 Grenoble, France
| | - Romain Mari
- LIPhy, Univ. Grenoble-Alpes, CNRS, 38000 Grenoble, France
| | | |
Collapse
|
3
|
Mäkinen T, Parmar ADS, Bonfanti S, Alava MJ. Avalanches in Cu-Zr-Al metallic glasses. Phys Rev E 2025; 111:014107. [PMID: 39972719 DOI: 10.1103/physreve.111.014107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025]
Abstract
Metallic glasses have mechanical properties, which exhibit avalanches in the disguise of stress drops. We study these phenomena in a classical metallic glass system Cu-Zr-Al by athermal quasistatic shear and varying the element concentrations and for pure Cu-Zr 50/50 case the cooling rate. The resulting mechanical properties are close to the behavior found experimentally. At small strains, the pristine systems are akin to other glassy systems with a so-called gap distribution with a small positive exponent. Critical avalanching behavior is found only approaching the yield point. The post-yield stress drops are universal, and the gap distribution becomes flat.
Collapse
Affiliation(s)
- Tero Mäkinen
- Aalto University, Department of Applied Physics, P. O. Box 15600, 00076 Aalto, Espoo, Finland
| | - Anshul D S Parmar
- National Center for Nuclear Research, NOMATEN Centre of Excellence, ul. A. Soltana 7, 05-400 Swierk/Otwock, Poland
| | - Silvia Bonfanti
- National Center for Nuclear Research, NOMATEN Centre of Excellence, ul. A. Soltana 7, 05-400 Swierk/Otwock, Poland
| | - Mikko J Alava
- Aalto University, Department of Applied Physics, P. O. Box 15600, 00076 Aalto, Espoo, Finland
- National Center for Nuclear Research, NOMATEN Centre of Excellence, ul. A. Soltana 7, 05-400 Swierk/Otwock, Poland
| |
Collapse
|
4
|
Divoux T, Agoritsas E, Aime S, Barentin C, Barrat JL, Benzi R, Berthier L, Bi D, Biroli G, Bonn D, Bourrianne P, Bouzid M, Del Gado E, Delanoë-Ayari H, Farain K, Fielding S, Fuchs M, van der Gucht J, Henkes S, Jalaal M, Joshi YM, Lemaître A, Leheny RL, Manneville S, Martens K, Poon WCK, Popović M, Procaccia I, Ramos L, Richards JA, Rogers S, Rossi S, Sbragaglia M, Tarjus G, Toschi F, Trappe V, Vermant J, Wyart M, Zamponi F, Zare D. Ductile-to-brittle transition and yielding in soft amorphous materials: perspectives and open questions. SOFT MATTER 2024; 20:6868-6888. [PMID: 39028363 DOI: 10.1039/d3sm01740k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.
Collapse
Affiliation(s)
- Thibaut Divoux
- ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France.
| | - Elisabeth Agoritsas
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Stefano Aime
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, Paris, France
| | - Catherine Barentin
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jean-Louis Barrat
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Roberto Benzi
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Daniel Bonn
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Philippe Bourrianne
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, France
| | - Mehdi Bouzid
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Emanuela Del Gado
- Georgetown University, Department of Physics, Institute for Soft Matter Synthesis and Metrology, Washington, DC, USA
| | - Hélène Delanoë-Ayari
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Kasra Farain
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Suzanne Fielding
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Silke Henkes
- Lorentz Institute, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maziyar Jalaal
- Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Anaël Lemaître
- Navier, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | - Wilson C K Poon
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str.38, 01187 Dresden, Germany
| | - Itamar Procaccia
- Dept. of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Sino-Europe Complex Science Center, School of Mathematics, North University of China, Shanxi, Taiyuan 030051, China
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - James A Richards
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saverio Rossi
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Mauro Sbragaglia
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Federico Toschi
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- CNR-IAC, Via dei Taurini 19, 00185 Rome, Italy
| | - Véronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg 1700, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, 8032 Zürich, Switzerland
| | - Matthieu Wyart
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Davoud Zare
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| |
Collapse
|
5
|
Villarroel C, Düring G. Avalanche properties at the yielding transition: from externally deformed glasses to active systems. SOFT MATTER 2024; 20:3520-3528. [PMID: 38600803 DOI: 10.1039/d3sm01354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We investigated the yielding phenomenon in the quasistatic limit using numerical simulations of soft particles. Two different deformation scenarios, simple shear (passive) and self-random force (active), and two interaction potentials were used. Our approach reveals that the exponents describing the avalanche distribution are universal within the margin of error, showing consistency between the passive and active systems. This indicates that any differences observed in the flow curves may have resulted from a dynamic effect on the avalanche propagation mechanism. The evolution time required to reach a steady state differs significantly between active and passive scenarios under similar conditions. However, we demonstrated that plastic avalanches under athermal quasistatic simulation dynamics display a similar scaling relationship between avalanche size and relaxation time, which cannot explain the different flow curves.
Collapse
Affiliation(s)
- Carlos Villarroel
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
| | - Gustavo Düring
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
| |
Collapse
|
6
|
Clemmer JT, Robbins MO. Universal behavior in fragmenting brittle, isotropic solids across material properties. Phys Rev E 2023; 108:034902. [PMID: 37849166 DOI: 10.1103/physreve.108.034902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
A bonded particle model is used to explore how variations in the material properties of brittle, isotropic solids affect critical behavior in fragmentation. To control material properties, a model is proposed which includes breakable two- and three-body particle interactions to calibrate elastic moduli and mode I and mode II fracture toughnesses. In the quasistatic limit, fragmentation leads to a power-law distribution of grain sizes which is truncated at a maximum grain mass that grows as a nontrivial power of system size. In the high-rate limit, truncation occurs at a mass that decreases as a power of increasing rate. A scaling description is used to characterize this behavior by collapsing the mean-square grain mass across rates and system sizes. Consistent scaling persists across all material properties studied, although there are differences in the evolution of grain size distributions with strain as the initial number of grains at fracture and their subsequent rate of production depend on Poisson's ratio. This evolving granular structure is found to induce a unique rheology where the ratio of the shear stress to pressure, an internal friction coefficient, decays approximately as the logarithm of increasing strain rate. The stress ratio also decreases at all rates with increasing strain as fragmentation progresses and depends on elastic properties of the solid.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Mark O Robbins
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
7
|
Richard D, Elgailani A, Vandembroucq D, Manning ML, Maloney CE. Mechanical excitation and marginal triggering during avalanches in sheared amorphous solids. Phys Rev E 2023; 107:034902. [PMID: 37072969 DOI: 10.1103/physreve.107.034902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 02/26/2023] [Indexed: 04/20/2023]
Abstract
We study plastic strain during individual avalanches in overdamped particle-scale molecular dynamics (MD) and mesoscale elastoplastic models (EPM) for amorphous solids sheared in the athermal quasistatic limit. We show that the spatial correlations in plastic activity exhibit a short length scale that grows as t^{3/4} in MD and ballistically in EPM, which is generated by mechanical excitation of nearby sites not necessarily close to their stability thresholds, and a longer lengthscale that grows diffusively for both models and is associated with remote marginally stable sites. These similarities in spatial correlations explain why simple EPMs accurately capture the size distribution of avalanches observed in MD, though the temporal profiles and dynamical critical exponents are quite different.
Collapse
Affiliation(s)
- D Richard
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
- Univiversité Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - A Elgailani
- Northeastern University, Boston, Massachusetts 02115, USA
| | - D Vandembroucq
- PMMH, CNRS UMR 7636, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - M L Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - C E Maloney
- Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
8
|
Guo W, Niiyama T, Yamada R, Wakeda M, Saida J. Synthesis and mechanical properties of highly structure-controlled Zr-based metallic glasses by thermal rejuvenation technique. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:154004. [PMID: 36731175 DOI: 10.1088/1361-648x/acb8a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A novel thermal rejuvenation treatment facility for Zr-based bulk metallic glass (BMG) was developed, consisting of a rapid heating and indirect liquid nitrogen quenching process. The re-introduction of free volume into thermally rejuvenated BMG results in more disordered state. The rejuvenation improves ductility, implying that the re-introduced free volume aids in the recovery of the shear transformation zone (STZ) site and volume. Actually, it is confirmed that relaxation significantly reduces STZ volume; however, it is recovered by thermal rejuvenation. Molecular dynamics simulations also indicate that rejuvenation enhances homogeneous deformation. The current findings indicate that the thermal rejuvenation method is extremely effective for recovering or improving the ductility of metallic glass that has been lost due to relaxation.
Collapse
Affiliation(s)
- Wei Guo
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba-Aramaki, Sendai 980-8578, Japan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, People's Republic of China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tomoaki Niiyama
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Rui Yamada
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba-Aramaki, Sendai 980-8578, Japan
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Masato Wakeda
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Junji Saida
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba-Aramaki, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Korchinski D, Rottler J. Dynamic phase diagram of plastically deformed amorphous solids at finite temperature. Phys Rev E 2022; 106:034103. [PMID: 36266895 DOI: 10.1103/physreve.106.034103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
The yielding transition that occurs in amorphous solids under athermal quasistatic deformation has been the subject of many theoretical and computational studies. Here, we extend this analysis to include thermal effects at finite shear rate, focusing on how temperature alters avalanches. We derive a nonequilibrium phase diagram capturing how temperature and strain rate effects compete, when avalanches overlap, and whether finite-size effects dominate over temperature effects. The predictions are tested through simulations of an elastoplastic model in two dimensions and in a mean-field approximation. We find a scaling for temperature-dependent softening in the low-strain rate regime when avalanches do not overlap, and a temperature-dependent Herschel-Bulkley exponent in the high-strain rate regime when avalanches do overlap.
Collapse
Affiliation(s)
- Daniel Korchinski
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - Jörg Rottler
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
10
|
Clemmer JT, Robbins MO. Critical Scaling of Solid Fragmentation at Quasistatic and Finite Strain Rates. PHYSICAL REVIEW LETTERS 2022; 129:078002. [PMID: 36018706 DOI: 10.1103/physrevlett.129.078002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/29/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Using two-dimensional simulations of sheared, brittle solids, we characterize the resulting fragmentation and explore its underlying critical nature. Under quasistatic loading, a power-law distribution of fragment masses emerges after fracture which grows with increasing strain. With increasing strain rate, the maximum size of a grain decreases and a shallower distribution is produced. We propose a scaling theory for distributions based on a fractal scaling of the largest mass with system size in the quasistatic limit or with a correlation length that diverges as a power of rate in the finite-rate limit. Critical exponents are measured using finite-size scaling techniques.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Mark O Robbins
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
11
|
Das P, Parmar ADS, Sastry S. Annealing glasses by cyclic shear deformation. J Chem Phys 2022; 157:044501. [DOI: 10.1063/5.0100523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A major challenge in simulating glassy systems is the ability to generate configurations that may be found in equilibrium at sufficiently low temperatures, in order to probe static and dynamic behavior close to the glass transition. A variety of approaches have recently explored ways of surmounting this obstacle. Here, we explore the possibility of employing mechanical agitation, in the form of cyclic shear deformation, to generate low energy configurations in a model glass former. We perform shear deformation simulations over a range of temperatures, shear rates, and strain amplitudes. We find that shear deformation induces faster relaxation toward low energy configurations, or overaging, in simulations at sufficiently low temperatures, consistently with previous results for athermal shear. However, for temperatures at which simulations can be run until a steady state is reached with or without shear deformation, we find that the inclusion of shear deformation does not result in any speed up of the relaxation toward low energy configurations. Although we find the configurations from shear simulations to have properties indistinguishable from an equilibrium ensemble, the cyclic shear procedure does not guarantee that we generate an equilibrium ensemble at a desired temperature. In order to ensure equilibrium sampling, we develop a hybrid Monte Carlo algorithm that employs cyclic shear as a trial generation step and has acceptance probabilities that depend not only on the change in internal energy but also on the heat dissipated (equivalently, work done). We show that such an algorithm, indeed, generates an equilibrium ensemble.
Collapse
Affiliation(s)
- Pallabi Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Anshul D. S. Parmar
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Srikanth Sastry
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
12
|
Maurya MK, Ruscher C, Mukherji D, Singh MK. Computational indentation in highly cross-linked polymer networks. Phys Rev E 2022; 106:014501. [PMID: 35974630 DOI: 10.1103/physreve.106.014501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Indentation is a common experimental technique to study the mechanics of polymeric materials. The main advantage of using indentation is this provides a direct correlation between the microstructure and the small-scale mechanical response, which is otherwise difficult within the standard tensile testing. The majority of studies have investigated hydrogels, microgels, elastomers, and even soft biomaterials. However, a less investigated system is the indentation in highly cross-linked polymer (HCP) networks, where the complex network structure plays a key role in dictating their physical properties. In this work, we investigate the structure-property relationship in HCP networks using the computational indentation of a generic model. We establish a correlation between the local bond breaking, network rearrangement, and small-scale mechanics. The results are compared with the elastic-plastic deformation model. HCPs harden upon indentation.
Collapse
Affiliation(s)
- Manoj Kumar Maurya
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur UP 208016, India
| | - Céline Ruscher
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada BC V6T 1Z4
| | - Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, Canada BC V6T 1Z4
| | - Manjesh Kumar Singh
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur UP 208016, India
| |
Collapse
|
13
|
Ekeh T, Fodor É, Fielding SM, Cates ME. Power fluctuations in sheared amorphous materials: A minimal model. Phys Rev E 2022; 105:L052601. [PMID: 35706183 DOI: 10.1103/physreve.105.l052601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The importance of mesoscale fluctuations in flowing amorphous materials is widely accepted, without a clear understanding of their role. We propose a mean-field elastoplastic model that admits both stress and strain-rate fluctuations, and investigate the character of its power distribution under steady shear flow. The model predicts the suppression of negative power fluctuations near the liquid-solid transition; the existence of a fluctuation relation in limiting regimes but its replacement in general by stretched-exponential power-distribution tails; and a crossover between two distinct mechanisms for negative power fluctuations in the liquid and the yielding solid phases. We connect these predictions with recent results from particle-based, numerical microrheological experiments.
Collapse
Affiliation(s)
- Timothy Ekeh
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Étienne Fodor
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Suzanne M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
14
|
Bhaumik H, Foffi G, Sastry S. Avalanches, Clusters, and Structural Change in Cyclically Sheared Silica Glass. PHYSICAL REVIEW LETTERS 2022; 128:098001. [PMID: 35302798 DOI: 10.1103/physrevlett.128.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate avalanches and clusters associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. We perform a detailed analysis of avalanches, and of spatially disconnected clusters that constitute them, for a wide range of system sizes. Although qualitative aspects of yielding in silica are similar to other glasses, the statistics of clusters exhibits significant differences, which we associate with differences in local structure. Across the yielding transition, anomalous structural change and densification, associated with a suppression of tetrahedral order, is observed to accompany strain localization.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Srikanth Sastry
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
15
|
Bhaumik H, Foffi G, Sastry S. Yielding transition of a two dimensional glass former under athermal cyclic sheardeformation. J Chem Phys 2022; 156:064502. [DOI: 10.1063/5.0085064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, Laboratoire de Physique des Solides, France
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, India
| |
Collapse
|
16
|
Korchinski D, Ruscher C, Rottler J. Signatures of the spatial extent of plastic events in the yielding transition in amorphous solids. Phys Rev E 2021; 104:034603. [PMID: 34654138 DOI: 10.1103/physreve.104.034603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022]
Abstract
Amorphous solids are yield stress materials that flow when a sufficient load is applied. Their flow consists of periods of elastic loading interrupted by rapid stress drops, or avalanches, coming from microscopic rearrangements known as shear transformations (STs). Here we show that the spatial extent of avalanches in a steadily sheared amorphous solid has a profound effect on the distribution of local residual stresses that in turn determines the stress drop statistics. As reported earlier, the most unstable sites are located in a flat "plateau" region that decreases with system size. While the entrance into the plateau is set by the lower cutoff of the mechanical noise produced by individual STs, the departure from the usually assumed power-law (pseudogap) form of the residual stress distribution comes from far field effects related to spatially extended rearrangements. Interestingly, we observe that the average residual stress of the weakest sites is located in an intermediate power-law regime between the pseudogap and the plateau regimes, whose exponent decreases with system size. Our findings imply a new scaling relation linking the exponents characterizing the avalanche size and residual stress distributions.
Collapse
Affiliation(s)
- Daniel Korchinski
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - Céline Ruscher
- Institut Charles Sadron - CNRS - UPR22, 23 rue du Loess, F-67034 Strasbourg, France
| | - Jörg Rottler
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| |
Collapse
|
17
|
Baró J, Pouragha M, Wan R, Davidsen J. Quasistatic kinetic avalanches and self-organized criticality in deviatorically loaded granular media. Phys Rev E 2021; 104:024901. [PMID: 34525539 DOI: 10.1103/physreve.104.024901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022]
Abstract
The behavior of granular media under quasistatic loading has recently been shown to attain a stable evolution state corresponding to a manifold in the space of micromechanical variables. This state is characterized by sudden transitions between metastable jammed states, involving the partial micromechanical rearrangement of the granular medium. Using numerical simulations of two-dimensional granular media under quasistatic biaxial compression, we show that the dynamics in the stable evolution state is characterized by scale-free avalanches well before the macromechanical stationary flow regime traditionally linked to a self-organized critical state. This, together with the nonuniqueness and the nonmonotony of macroscopic deformation curves, suggests that the statistical avalanche properties and the susceptibilities of the system cannot be reduced to a function of the macromechanical state. The associated scaling exponents are nonuniversal and depend on the interactions between particles. For stiffer particles (or samples at low confining pressure) we find distributions of avalanche properties compatible with the predictions of mean-field theory. The scaling exponents decrease below the mean-field values for softer interactions between particles. These lower exponents are consistent with observations for amorphous solids at their critical point. We specifically discuss the relationship between microscopic and macroscopic variables, including the relation between the external stress drop and the internal potential energy released during kinetic avalanches.
Collapse
Affiliation(s)
- Jordi Baró
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4.,Centre for Mathematical Research, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Mehdi Pouragha
- Civil Engineering Department, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4.,Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Richard Wan
- Civil Engineering Department, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4
| | - Jörn Davidsen
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
18
|
Oyama N, Mizuno H, Ikeda A. Unified view of avalanche criticality in sheared glasses. Phys Rev E 2021; 104:015002. [PMID: 34412287 DOI: 10.1103/physreve.104.015002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Plastic events in sheared glasses are considered an example of so-called avalanches, whose sizes obey a power-law probability distribution with the avalanche critical exponent τ. Although the so-called mean-field depinning (MFD) theory predicts a universal value of this exponent, τ_{MFD}=1.5, such a simplification is now known to connote qualitative disagreement with realistic systems. Numerically and experimentally, different values of τ have been reported depending on the literature. Moreover, in the elastic regime, it has been noted that the critical exponent can be different from that in the steady state, and even criticality itself is a matter of debate. Because these confusingly varying results have been reported under different setups, our knowledge of avalanche criticality in sheared glasses is greatly limited. To gain a unified understanding, in this work, we conduct a comprehensive numerical investigation of avalanches in Lennard-Jones glasses under athermal quasistatic shear. In particular, by excluding the ambiguity and arbitrariness that has crept into the conventional measurement schemes, we achieve high-precision measurement and demonstrate that the exponent τ in the steady state follows the prediction of MFD theory, τ_{MFD}=1.5. Our results also suggest that there are two qualitatively different avalanche events. This binariness leads to the nonuniversal behavior of the avalanche size distribution and is likely to be the cause of the varying values of τ reported thus far. To investigate the dependence of criticality and universality on applied shear, we further study the statistics of avalanches in the elastic regime and the ensemble of the first avalanche event in different samples, which provide information about the unperturbed system. We show that while the unperturbed system is indeed off-critical, criticality gradually develops as shear is applied. The degree of criticality is encoded in the fractal dimension of the avalanches, which starts from zero in the off-critical unperturbed state and saturates in the steady state. Moreover, the critical exponent τ is consistent with the prediction of the MFD τ_{MFD} universally, regardless of the amount of applied shear, once the system becomes critical.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
19
|
Saitoh K. The role of friction in statistics and scaling laws of avalanches. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:85. [PMID: 34165652 DOI: 10.1140/epje/s10189-021-00089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
We investigate statistics and scaling laws of avalanches in two-dimensional frictional particles by numerical simulations. We find that the critical exponent for avalanche size distributions is governed by microscopic friction between the particles in contact, where the exponent is larger and closer to mean-field predictions if the friction coefficient is finite. We reveal that microscopic "slips" between frictional particles induce numerous small avalanches which increase the slope, as well as the power-law exponent, of avalanche size distributions. We also analyze statistics and scaling laws of the avalanche duration and maximum stress drop rates, and examine power spectra of stress drop rates. Our numerical results suggest that the microscopic friction is a key ingredient of mean-field descriptions and plays a crucial role in avalanches observed in real materials.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
20
|
Clemmer JT, Salerno KM, Robbins MO. Criticality in sheared, disordered solids. I. Rate effects in stress and diffusion. Phys Rev E 2021; 103:042605. [PMID: 34005889 DOI: 10.1103/physreve.103.042605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Rate effects in sheared disordered solids are studied using molecular dynamics simulations of binary Lennard-Jones glasses in two and three dimensions. In the quasistatic (QS) regime, systems exhibit critical behavior: the magnitudes of avalanches are power-law distributed with a maximum cutoff that diverges with increasing system size L. With increasing rate, systems move away from the critical yielding point and the average flow stress rises as a power of the strain rate with exponent 1/β, the Herschel-Bulkley exponent. Finite-size scaling collapses of the stress are used to measure β as well as the exponent ν which characterizes the divergence of the correlation length. The stress and kinetic energy per particle experience fluctuations with strain that scale as L^{-d/2}. As the largest avalanche in a system scales as L^{α}, this implies α<d/2. The diffusion rate of particles diverges as a power of decreasing rate before saturating in the QS regime. A scaling theory for the diffusion is derived using the QS avalanche rate distribution and generalized to the finite strain rate regime. This theory is used to collapse curves for different system sizes and confirm β/ν.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| | | | - Mark O Robbins
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
21
|
Clemmer JT, Salerno KM, Robbins MO. Criticality in sheared, disordered solids. II. Correlations in avalanche dynamics. Phys Rev E 2021; 103:042606. [PMID: 34005991 DOI: 10.1103/physreve.103.042606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Disordered solids respond to quasistatic shear with intermittent avalanches of plastic activity, an example of the crackling noise observed in many nonequilibrium critical systems. The temporal power spectrum of activity within disordered solids consists of three distinct domains: a novel power-law rise with frequency at low frequencies indicating anticorrelation, white-noise at intermediate frequencies, and a power-law decay at high frequencies. As the strain rate increases, the white-noise regime shrinks and ultimately disappears as the finite strain rate restricts the maximum size of an avalanche. A new strain-rate- and system-size-dependent theory is derived for power spectra in both the quasistatic and finite-strain-rate regimes. This theory is validated using data from overdamped two- and three-dimensional molecular dynamics simulations. We identify important exponents in the yielding transition including the dynamic exponent z which relates the size of an avalanche to its duration, the fractal dimension of avalanches, and the exponent characterizing the divergence in correlations with strain rate. Results are related to temporal correlations within a single avalanche and between multiple avalanches.
Collapse
Affiliation(s)
- Joel T Clemmer
- Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| | | | - Mark O Robbins
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
22
|
Ferrero EE, Jagla EA. Properties of the density of shear transformations in driven amorphous solids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:124001. [PMID: 33393487 DOI: 10.1088/1361-648x/abd73a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The strain load Δγthat triggers consecutive avalanches is a key observable in the slow deformation of amorphous solids. Its temporally averaged value ⟨Δγ⟩ displays a non-trivial system-size dependence that constitutes one of the distinguishing features of the yielding transition. Details of this dependence are not yet fully understood. We address this problem by means of theoretical analysis and simulations of elastoplastic models for amorphous solids. An accurate determination of the size dependence of ⟨Δγ⟩ leads to a precise evaluation of the steady-state distribution of local distances to instabilityx. We find that the usually assumed formP(x) ∼xθ(withθbeing the so-called pseudo-gap exponent) is not accurate at lowxand that in generalP(x) tends to a system-size-dependentfinitelimit asx→ 0. We work out the consequences of this finite-size dependence standing on exact results for random-walks and disclosing an alternative interpretation of the mechanical noise felt by a reference site. We test our predictions in two- and three-dimensional elastoplastic models, showing the crucial influence of the saturation ofP(x) at smallxon the size dependence of ⟨Δγ⟩ and related scalings.
Collapse
Affiliation(s)
- Ezequiel E Ferrero
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, (R8402AGP) San Carlos de Bariloche, Río Negro, Argentina
| | - Eduardo A Jagla
- Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, CNEA, CONICET, UNCUYO, Av E Bustillo 9500 R8402AGP S C de Bariloche, Río Negro, Argentina
| |
Collapse
|
23
|
Léopoldès J, Jia X. Probing intermittency and reversibility in a dense granular suspension under shear using multiply scattered ultrasound. SOFT MATTER 2020; 16:10716-10722. [PMID: 33103176 DOI: 10.1039/d0sm01427c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the rheology of a dense granular suspension under shear strain with the simultaneous detection of multiply scattered ultrasound through the shear band. At a low shear rate, the dissipation is rate-independent and determined by the frictional contacts between grains. Under quasistatic shear, the stress-strain curve contains elastic loading parts interrupted by stress drops. Such an intermittency is concomitant with some large decorrelation events as measured by the ultrasound probe, sensitive to the position of the grains. Under cyclic shear, the correlations between the scattered ultrasonic waves show that at low shear strain, the grains exhibit reversible motion. Beyond this linear regime, some irreversible motion of the grains is detected. Moreover, the correlation between successive ultrasound signals suggests that some specific rearrangements, which add to the homogeneous flow, take place near the maximum strain.
Collapse
Affiliation(s)
- J Léopoldès
- ESPCI Paris, PSL University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005 Paris, France.
| | | |
Collapse
|
24
|
Ruscher C, Rottler J. Residual stress distributions in amorphous solids from atomistic simulations. SOFT MATTER 2020; 16:8940-8949. [PMID: 32901650 DOI: 10.1039/d0sm01155j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The distribution of local residual stresses (threshold to instability) that controls the statistical properties of plastic flow in athermal amorphous solids is examined with an atomistic simulation technique. For quiescent configurations, the distribution has a pseudogap (power-law) form with an exponent that agrees well with global yielding statistics. As soon as deformation sets in, the pseudogap region gives way to a system size dependent plateau at small residual stresses that can be understood from the statistics of local residual stress differences between plastic events. Results further suggest that the local yield stress in amorphous solids changes even if the given region does not participate in plastic activity.
Collapse
Affiliation(s)
- Céline Ruscher
- Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France. and Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Jörg Rottler
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
25
|
Zhang P, Salman OU, Weiss J, Truskinovsky L. Variety of scaling behaviors in nanocrystalline plasticity. Phys Rev E 2020; 102:023006. [PMID: 32942484 DOI: 10.1103/physreve.102.023006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022]
Abstract
We address the question of why larger, high-symmetry crystals are mostly weak, ductile, and statistically subcritical, while smaller crystals with the same symmetry are strong, brittle and supercritical. We link it to another question of why intermittent elasto-plastic deformation of submicron crystals features highly unusual size sensitivity of scaling exponents. We use a minimal integer-valued automaton model of crystal plasticity to show that with growing variance of quenched disorder, which can serve in this case as a proxy for increasing size, submicron crystals undergo a crossover from spin-glass marginality to criticality characterizing the second order brittle-to-ductile (BD) transition. We argue that this crossover is behind the nonuniversality of scaling exponents observed in physical and numerical experiments. The nonuniversality emerges only if the quenched disorder is elastically incompatible, and it disappears if the disorder is compatible.
Collapse
Affiliation(s)
- P Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - O U Salman
- CNRS, LSPM UPR3407, Paris Nord Sorbonne Université, 93430, Villetaneuse, France
| | - J Weiss
- IsTerre, CNRS/Université Grenoble Alpes, 38401 Grenoble, France
| | - L Truskinovsky
- PMMH, CNRS UMR 7636, ESPCI ParisTech, 10 Rue Vauquelin, 75005, Paris, France
| |
Collapse
|
26
|
Shang B, Guan P, Barrat JL. Elastic avalanches reveal marginal behavior in amorphous solids. Proc Natl Acad Sci U S A 2020; 117:86-92. [PMID: 31843936 PMCID: PMC6955357 DOI: 10.1073/pnas.1915070117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well established, however, that the apparent linearity of stress with strain is actually a proxy for a much more complex behavior, with a microscopic plasticity that is reflected in diverging nonlinear elastic coefficients. Very generally, the complex structure of the energy landscape is expected to induce a singular response to small perturbations. In the athermal quasistatic regime, this response manifests itself in the form of a scale-free plastic activity. The distribution of the corresponding avalanches should reflect, according to theoretical mean-field calculations [S. Franz and S. Spigler, Phys. Rev. E 95, 022139 (2017)], the geometry of phase space in the vicinity of a typical local minimum. In this work, we characterize this distribution for simple models of glass-forming systems, and we find that its scaling is compatible with the mean-field predictions for systems above the jamming transition. These systems exhibit marginal stability, and scaling relations that hold in the stationary state are examined and confirmed in the elastic regime. By studying the respective influence of system size and age, we suggest that marginal stability is systematic in the thermodynamic limit.
Collapse
Affiliation(s)
- Baoshuang Shang
- Beijing Computational Science Research Center, Beijing 100193, China
- Université Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique (LIPhy), 38000 Grenoble, France
| | - Pengfei Guan
- Beijing Computational Science Research Center, Beijing 100193, China;
| | - Jean-Louis Barrat
- Université Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique (LIPhy), 38000 Grenoble, France
| |
Collapse
|
27
|
Niiyama T, Wakeda M, Shimokawa T, Ogata S. Structural relaxation affecting shear-transformation avalanches in metallic glasses. Phys Rev E 2019; 100:043002. [PMID: 31770901 DOI: 10.1103/physreve.100.043002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 11/07/2022]
Abstract
Avalanche behaviors, characterized by power-law statistics and structural relaxation that induces shear localization in amorphous plasticity, play an essential role in deciding the mechanical properties of amorphous metallic solids (i.e., metallic glasses). However, their interdependence is still not fully understood. To investigate the influence of structural relaxation on elementary avalanche behavior, we perform molecular-dynamics simulations for the shear deformation test of metallic glasses using two typical metallic-glass models comprising a less-relaxed (as-quenched) glass and a well-relaxed (well-aged) glass exhibiting a relatively homogeneous deformation and a shear-band-like heterogeneous deformation, respectively. The data on elementary avalanches obtained from both glass models follow the same power-law statistics with different maximum event sizes, and the well-relaxed glass shows shear localization. Evaluating the spatial correlation functions of the nonaffine squared displacements of atoms during each elementary avalanche event, we observe that the shapes of the elementary avalanche regions in the well-relaxed glasses tend to be anisotropic, whereas those in the less-relaxed glasses are relatively isotropic. Furthermore, we demonstrate that a temporal clustering in the direction of the avalanche propagation emerges, and a considerable correlation between the anisotropy and avalanche size exists in the well-relaxed glass model.
Collapse
Affiliation(s)
- Tomoaki Niiyama
- College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masato Wakeda
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tomotsugu Shimokawa
- Faculty of Mechanical Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shigenobu Ogata
- Department of Mechanical Science and Bioengineering, Osaka University, Osaka 560-8531, Japan.,Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Clemmer JT, Robbins MO. Anisotropic avalanches and critical depinning of three-dimensional magnetic domain walls. Phys Rev E 2019; 100:042121. [PMID: 31770980 DOI: 10.1103/physreve.100.042121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Indexed: 11/07/2022]
Abstract
Simulations with more than 10^{12} spins are used to study the motion of a domain wall driven through a three-dimensional random-field Ising magnet (RFIM) by an external field H. The interface advances in a series of avalanches whose size diverges at a critical external field H_{c}. Finite-size scaling is applied to determine critical exponents and test scaling relations. Growth is intrinsically anisotropic with the height of an avalanche normal to the interface ℓ_{⊥} scaling as the width along the interface ℓ_{∥} to a power χ=0.85±0.01. The total interface roughness is consistent with self-affine scaling with a roughness exponent ζ≈χ that is much larger than values found previously for the RFIM and related models that explicitly break orientational symmetry by requiring the interface to be single-valued. Because the RFIM maintains orientational symmetry, the interface develops overhangs that may surround unfavorable regions to create uninvaded bubbles. Overhangs complicate measures of the roughness exponent but decrease in importance with increasing system size.
Collapse
Affiliation(s)
- Joel T Clemmer
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Mark O Robbins
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
29
|
de Geus TWJ, Popović M, Ji W, Rosso A, Wyart M. How collective asperity detachments nucleate slip at frictional interfaces. Proc Natl Acad Sci U S A 2019; 116:23977-23983. [PMID: 31699820 PMCID: PMC6883799 DOI: 10.1073/pnas.1906551116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sliding at a quasi-statically loaded frictional interface can occur via macroscopic slip events, which nucleate locally before propagating as rupture fronts very similar to fracture. We introduce a microscopic model of a frictional interface that includes asperity-level disorder, elastic interaction between local slip events, and inertia. For a perfectly flat and homogeneously loaded interface, we find that slip is nucleated by avalanches of asperity detachments of extension larger than a critical radius [Formula: see text] governed by a Griffith criterion. We find that after slip, the density of asperities at a local distance to yielding [Formula: see text] presents a pseudogap [Formula: see text], where θ is a nonuniversal exponent that depends on the statistics of the disorder. This result makes a link between friction and the plasticity of amorphous materials where a pseudogap is also present. For friction, we find that a consequence is that stick-slip is an extremely slowly decaying finite-size effect, while the slip nucleation radius [Formula: see text] diverges as a θ-dependent power law of the system size. We discuss how these predictions can be tested experimentally.
Collapse
Affiliation(s)
- Tom W J de Geus
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Marko Popović
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Wencheng Ji
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alberto Rosso
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Matthieu Wyart
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
30
|
Bhowmik BP, Chaudhuri P, Karmakar S. Effect of Pinning on the Yielding Transition of Amorphous Solids. PHYSICAL REVIEW LETTERS 2019; 123:185501. [PMID: 31763889 DOI: 10.1103/physrevlett.123.185501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Indexed: 06/10/2023]
Abstract
Using numerical simulations, we have studied the yielding response, in the athermal quasistatic limit, of a model amorphous material having inclusions in the form of randomly pinned particles. We show that, with increasing pinning concentration, the plastic activity becomes more spatially localized, resulting in smaller stress drops, and a corresponding increase in the magnitude of strain where yielding occurs. We demonstrate that, unlike the spatially heterogeneous and avalanche led yielding in the case of the unpinned glass, for the case of large pinning concentration, yielding takes place via a spatially homogeneous proliferation of localized events.
Collapse
Affiliation(s)
- Bhanu Prasad Bhowmik
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107, Telangana, India
| | - Pinaki Chaudhuri
- Institute of Mathematical Sciences, IV Cross Road, CIT Campus, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107, Telangana, India
| |
Collapse
|
31
|
Pelusi F, Sbragaglia M, Benzi R. Avalanche statistics during coarsening dynamics. SOFT MATTER 2019; 15:4518-4524. [PMID: 31098607 DOI: 10.1039/c9sm00332k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the coarsening dynamics of a two-dimensional system via numerical simulations. The system under consideration is a biphasic system consisting of domains of a dispersed phase closely packed together in a continuous phase and separated by thin interfaces. Such a system is elastic and typically out of equilibrium. The equilibrium state is attained via the coarsening dynamics, wherein the dispersed phase slowly diffuses through the interfaces, causing the domains to change in size and eventually rearrange abruptly. The effect of rearrangements is propagated throughout the system via the intrinsic elastic interactions and may cause rearrangements elsewhere, resulting in intermittent bursts of activity and avalanche behaviour. Here we aim at quantitatively characterizing the corresponding avalanche statistics (i.e. size, duration, and inter-avalanche time). Despite the coarsening dynamics is triggered by an internal driving mechanism, we find quantitative indications that such avalanche statistics displays scaling-laws very similar to those observed in the response of disordered materials to external loads.
Collapse
Affiliation(s)
- Francesca Pelusi
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma RM, Italy.
| | | | | |
Collapse
|
32
|
Salje EKH, Liu H, Xiao Y, Jin L, Planes A, Vives E, Xie K, Jiang X. Avalanche mixing and the simultaneous collapse of two media under uniaxial stress. Phys Rev E 2019; 99:023002. [PMID: 30934264 DOI: 10.1103/physreve.99.023002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Indexed: 06/09/2023]
Abstract
Avalanches in coal and sandstone samples under common uniaxial stress serve as a model for mixing of avalanche exponents in ceramics, multiferroics, and alloys. The two media are sandwiched together and subjected to common uniaxial stress using high- and low-stress compression. Each medium collapses individually through avalanches that often coincide with secondary avalanches into the other medium. The total avalanche time sequence allows a detailed investigation of the mixing by superposition and delayed coincidence. Correlations can be described by an inter-media Båth's law.
Collapse
Affiliation(s)
- Ekhard K H Salje
- School of Civil Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
- State Key Laboratory for Mechanical Behaviors of Materials, Xi'an Jiao Tong University, 710049 Xi'an, People's Republic of China
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Hanlong Liu
- School of Civil Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
| | - Yang Xiao
- School of Civil Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
| | - Linsen Jin
- School of Civil Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
| | - Antoni Planes
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
| | - Eduard Vives
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
| | - Kainan Xie
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 400044 Chongqing, People's Republic of China
| | - Xiang Jiang
- School of Civil Engineering, Chongqing University, 400044 Chongqing, People's Republic of China
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| |
Collapse
|
33
|
Tyukodi B, Vandembroucq D, Maloney CE. Diffusion in Mesoscopic Lattice Models of Amorphous Plasticity. PHYSICAL REVIEW LETTERS 2018; 121:145501. [PMID: 30339423 DOI: 10.1103/physrevlett.121.145501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/21/2018] [Indexed: 06/08/2023]
Abstract
We present results on tagged particle diffusion in a mesoscale lattice model for sheared amorphous material in athermal quasistatic conditions. We find a short time diffusive regime and a long time diffusive regime whose diffusion coefficients depend on system size in dramatically different ways. At short time, we find that the diffusion coefficient, D, scales roughly linearly with system length, D∼L^{1.05}. This short time behavior is consistent with particle-based simulations. The long-time diffusion coefficient scales like D∼L^{1.6}, close to previous studies which found D∼L^{1.5}. Furthermore, we show that the near-field details of the interaction kernel do not affect the short time behavior but qualitatively and dramatically affect the long time behavior, potentially causing a saturation of the mean-squared displacement at long times. Our finding of a D∼L^{1.05} short time scaling resolves a long standing puzzle about the disagreement between the diffusion coefficient measured in particle-based models and mesoscale lattice models of amorphous plasticity.
Collapse
Affiliation(s)
- Botond Tyukodi
- PMMH, ESPCI Paris, CNRS UMR 7636, Sorbonne Université, Université Paris Diderot, PSL Research University 10 rue Vauquelin, 75231 Paris cedex 05, France
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Babeş-Bolyai University, Cluj-Napoca 400084, Romania
| | - Damien Vandembroucq
- PMMH, ESPCI Paris, CNRS UMR 7636, Sorbonne Université, Université Paris Diderot, PSL Research University 10 rue Vauquelin, 75231 Paris cedex 05, France
| | - Craig E Maloney
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Ozawa M, Berthier L, Biroli G, Rosso A, Tarjus G. Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proc Natl Acad Sci U S A 2018; 115:6656-6661. [PMID: 29891678 PMCID: PMC6042060 DOI: 10.1073/pnas.1806156115] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We combine an analytically solvable mean-field elasto-plastic model with molecular dynamics simulations of a generic glass former to demonstrate that, depending on their preparation protocol, amorphous materials can yield in two qualitatively distinct ways. We show that well-annealed systems yield in a discontinuous brittle way, as metallic and molecular glasses do. Yielding corresponds in this case to a first-order nonequilibrium phase transition. As the degree of annealing decreases, the first-order character becomes weaker and the transition terminates in a second-order critical point in the universality class of an Ising model in a random field. For even more poorly annealed systems, yielding becomes a smooth crossover, representative of the ductile rheological behavior generically observed in foams, emulsions, and colloidal glasses. Our results show that the variety of yielding behaviors found in amorphous materials does not necessarily result from the diversity of particle interactions or microscopic dynamics but is instead unified by carefully considering the role of the initial stability of the system.
Collapse
Affiliation(s)
- Misaki Ozawa
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France;
| | - Giulio Biroli
- Institut de Physique Théorique, Université Paris Saclay, Commissariat à l'énergie atomique (CEA), CNRS, F-91191 Gif-sur-Yvette, France
- Laboratoire de Physique Statistique, École Normale Supérieure, CNRS, Paris Sciences et Lettres (PSL) Research University, Sorbonne Université, 75005 Paris, France
| | - Alberto Rosso
- Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Gilles Tarjus
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie (UPMC)-Sorbonne Université, 75252 Paris Cedex 05, France
| |
Collapse
|
35
|
Baró J, Davidsen J. Universal avalanche statistics and triggering close to failure in a mean-field model of rheological fracture. Phys Rev E 2018; 97:033002. [PMID: 29776086 DOI: 10.1103/physreve.97.033002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 06/08/2023]
Abstract
The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible for deformation. Avalanche models involving critical failure have determined common universality classes for stick-slip processes and fracture. However, not all empirical failure processes exhibit the trademarks of criticality. The rheological properties of materials introduce dissipation, usually reproduced in conceptual models as a hardening of the coarse grained elements of the system. Here, we investigate the effects of transient hardening on (i) the activity rate and (ii) the statistical properties of avalanches. We find the explicit representation of transient hardening in the presence of generalized viscoelasticity and solve the corresponding mean-field model of fracture. In the quasistatic limit, the accelerated energy release is invariant with respect to rheology and the avalanche propagation can be reinterpreted in terms of a stochastic counting process. A single universality class can be defined from such analogy, and all statistical properties depend only on the distance to criticality. We also prove that interevent correlations emerge due to the hardening-even in the quasistatic limit-that can be interpreted as "aftershocks" and "foreshocks."
Collapse
Affiliation(s)
- Jordi Baró
- Department of Physics and Astronomy University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4
| | - Jörn Davidsen
- Department of Physics and Astronomy University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
36
|
Lin J, Wyart M. Microscopic processes controlling the Herschel-Bulkley exponent. Phys Rev E 2018; 97:012603. [PMID: 29448383 DOI: 10.1103/physreve.97.012603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 06/08/2023]
Abstract
The flow curve of various yield stress materials is singular as the strain rate vanishes and can be characterized by the so-called Herschel-Bulkley exponent n=1/β. A mean-field approximation due to Hebraud and Lequeux (HL) assumes mechanical noise to be Gaussian and leads to β=2 in rather good agreement with observations. Here we prove that the improved mean-field model where the mechanical noise has fat tails instead leads to β=1 with logarithmic correction. This result supports that HL is not a suitable explanation for the value of β, which is instead significantly affected by finite-dimensional effects. From considerations on elastoplastic models and on the limitation of speed at which avalanches of plasticity can propagate, we argue that β=1+1/(d-d_{f}), where d_{f} is the fractal dimension of avalanches and d the spatial dimension. Measurements of d_{f} then supports that β≈2.1 and β≈1.7 in two and three dimensions, respectively. We discuss theoretical arguments leading to approximations of β in finite dimensions.
Collapse
Affiliation(s)
- Jie Lin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Matthieu Wyart
- Institute of Theoretical Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Xu N, Liu AJ, Nagel SR. Instabilities of Jammed Packings of Frictionless Spheres Under Load. PHYSICAL REVIEW LETTERS 2017; 119:215502. [PMID: 29219410 DOI: 10.1103/physrevlett.119.215502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 06/07/2023]
Abstract
We consider the contribution to the density of vibrational states and the distribution of energy barrier heights of incipient instabilities in a glass modeled by a jammed packing of spheres. On approaching an instability, the frequency of a normal mode and the height of the energy barrier to cross into a new ground state both vanish. These instabilities produce a contribution to the density of vibrational states that scales as ω^{3} at low frequencies ω, and a contribution to the distribution of energy barriers ΔH that scales as ΔH^{-1/3} at low barrier heights.
Collapse
Affiliation(s)
- Ning Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sidney R Nagel
- Department of Physics and James Franck and Enrico Fermi Institutes, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
38
|
Salje EKH, Planes A, Vives E. Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping. Phys Rev E 2017; 96:042122. [PMID: 29347614 DOI: 10.1103/physreve.96.042122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Crackling noise can be initiated by competing or coexisting mechanisms. These mechanisms can combine to generate an approximate scale invariant distribution that contains two or more contributions. The overall distribution function can be analyzed, to a good approximation, using maximum-likelihood methods and assuming that it follows a power law although with nonuniversal exponents depending on a varying lower cutoff. We propose that such distributions are rather common and originate from a simple superposition of crackling noise distributions or exponential damping.
Collapse
Affiliation(s)
- Ekhard K H Salje
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Antoni Planes
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès,1, E-08028 Barcelona, Catalonia
| | - Eduard Vives
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès,1, E-08028 Barcelona, Catalonia
| |
Collapse
|
39
|
Jagla EA. Different universality classes at the yielding transition of amorphous systems. Phys Rev E 2017; 96:023006. [PMID: 28950617 DOI: 10.1103/physreve.96.023006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Indexed: 06/07/2023]
Abstract
We study the yielding transition of a two-dimensional amorphous system under shear by using a mesoscopic elasto-plastic model. The model combines a full (tensorial) description of the elastic interactions in the system and the possibility of structural reaccommodations that are responsible for the plastic behavior. The possible structural reaccommodations are encoded in the form of a "plastic disorder" potential, which is chosen independently at each position of the sample to account for local heterogeneities. We observe that the stress must exceed a critical value σ_{c} in order for the system to yield. In addition, when the system yields a flow curve (relating stress σ and strain rate γ[over ̇]) of the form γ[over ̇]∼(σ-σ_{c})^{β} is obtained. Remarkably, we observe the value of β to depend on some details of the plastic disorder potential. For smooth potentials a value of β≃2.0 is obtained, whereas for potentials obtained as a concatenation of smooth pieces a value β≃1.5 is observed in the simulations. This indicates a dependence of critical behavior on details of the plastic behavior. In addition, by integrating out nonessential, harmonic degrees of freedom, we derive a simplified scalar version of the model that represents a collection of interacting Prandtl-Tomlinson particles. A mean-field treatment of this interaction reproduces the difference of β exponents for the two classes of plastic disorder potentials and provides values of β that compare favorably with those found in the full simulations.
Collapse
Affiliation(s)
- E A Jagla
- Comisión Nacional de Energía Atómica, Instituto Balseiro (UNCu), and CONICET Centro Atómico Bariloche, (8400) Bariloche, Argentina
| |
Collapse
|
40
|
Abstract
Plastic yielding of amorphous solids occurs by power-law distributed deformation avalanches whose universality is still debated. Experiments and molecular dynamics simulations are hampered by limited statistical samples, and although existing stochastic models give precise exponents, they require strong assumptions about fixed deformation directions, at odds with the statistical isotropy of amorphous materials. Here, we introduce a fully tensorial, stochastic mesoscale model for amorphous plasticity that links the statistical physics of plastic yielding to engineering mechanics. It captures the complex shear patterning observed for a wide variety of deformation modes, as well as the avalanche dynamics of plastic flow. Avalanches are described by universal size exponents and scaling functions, avalanche shapes, and local stability distributions, independent of system dimensionality, boundary and loading conditions, and stress state. Our predictions consistently differ from those of mean-field depinning models, providing evidence that plastic yielding is a distinct type of critical phenomenon. The universality class for plastic yield in amorphous materials remains controversial. Here authors present a tensorial mesoscale model that captures both complex shear patterns and avalanche scaling behaviour, which differs from mean-field models and suggests a distinct type of critical phenomenon.
Collapse
|
41
|
Gueudré T, Lin J, Rosso A, Wyart M. Scaling description of non-local rheology. SOFT MATTER 2017; 13:3794-3801. [PMID: 28492682 DOI: 10.1039/c7sm00434f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The plastic flow of amorphous materials displays non-local effects, characterized by a cooperativity length scale ξ. We argue that these effects enter in the more general description of surface phenomena near critical points. Using this approach, we obtain a scaling relation between exponents that describe the strain rate profiles in shear driven and pressure driven flow, which we confirm both in numerical models and experimental data. We find empirically that the cooperative length follows closely the characteristic length previously extracted in homogenous bulk flows. This analysis shows that the often used mean field exponents fail to capture quantitatively the non-local effects. Our analysis also explains the unusually large finite size effects previously observed in pressure driven flows.
Collapse
Affiliation(s)
- Thomas Gueudré
- DISAT, Politecnico Corso Duca degli Abruzzi, I-10129 Torino, Italy.
| | | | | | | |
Collapse
|
42
|
Yılmaz O, Derlet PM, Molinari JF. Damage cluster distributions in numerical concrete at the mesoscale. Phys Rev E 2017; 95:043002. [PMID: 28505850 DOI: 10.1103/physreve.95.043002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 11/07/2022]
Abstract
We investigate the size distribution of damage clusters in concrete under uniaxial tension loading conditions. Using the finite-element method, the concrete is modeled at the mesoscale by a random distribution of elastic spherical aggregates within an elastic mortar paste. The propagation and coalescence of damage zones are then simulated by means of dynamically inserted cohesive elements. Dynamic failure analysis shows that the size distribution of damage clusters follows a power law when a system-spanning cluster is first observed, with an exponent close to that of percolation theory. This is found for a range of selected mesostructural parameters, material defects, and applied strain rates. In all cases, the system-spanning cluster occurs prior to the onset of local decohesion, a regime of crack nucleation and propagation, and eventual material failure. The resulting fully damaged crack surfaces after failure are found to be only weakly correlated with the percolated damage region structures.
Collapse
Affiliation(s)
- Okan Yılmaz
- Civil Engineering Institute, Materials Science and Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 18, CH-1015 Lausanne, Switzerland
| | - Peter Michael Derlet
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jean-François Molinari
- Civil Engineering Institute, Materials Science and Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 18, CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Zhang D, Dahmen KA, Ostoja-Starzewski M. Scaling of slip avalanches in sheared amorphous materials based on large-scale atomistic simulations. Phys Rev E 2017; 95:032902. [PMID: 28415186 DOI: 10.1103/physreve.95.032902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Indexed: 11/07/2022]
Abstract
Atomistic simulations of binary amorphous systems with over 4 million atoms are performed. Systems of two interatomic potentials of the Lennard-Jones type, LJ12-6 and LJ9-6, are simulated. The athermal quasistatic shearing protocol is adopted, where the shear strain is applied in a stepwise fashion with each step followed by energy minimization. For each avalanche event, the shear stress drop (Δσ), the hydrostatic pressure drop (Δσ_{h}), and the potential energy drop (ΔE) are computed. It is found that, with the avalanche size increasing, the three become proportional to each other asymptotically. The probability distributions of avalanche sizes are obtained and values of scaling exponents fitted. In particular, the distributions follow a power law, P(ΔU)∼ΔU^{-τ}, where ΔU is a measure of avalanche sizes defined based on shear stress drops. The exponent τ is 1.25±0.1 for the LJ12-6 systems, and 1.15±0.1 for the LJ9-6 systems. The value of τ for the LJ12-6 systems is consistent with that from an earlier atomistic simulation study by Robbins et al. [Phys. Rev. Lett. 109, 105703 (2012)]PRLTAO0031-900710.1103/PhysRevLett.109.105703, but the fitted values of other scaling exponents differ, which may be because the shearing protocol used here differs from that in their study.
Collapse
Affiliation(s)
- Dansong Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Karin A Dahmen
- Department of Physics, Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Ostoja-Starzewski
- Department of Mechanical Science and Engineering, Institute for Condensed Matter Theory and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
44
|
Denisov DV, Lőrincz KA, Wright WJ, Hufnagel TC, Nawano A, Gu X, Uhl JT, Dahmen KA, Schall P. Universal slip dynamics in metallic glasses and granular matter - linking frictional weakening with inertial effects. Sci Rep 2017; 7:43376. [PMID: 28262791 PMCID: PMC5338258 DOI: 10.1038/srep43376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/23/2017] [Indexed: 11/09/2022] Open
Abstract
Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics.
Collapse
Affiliation(s)
- Dmitry V Denisov
- Institute of Physics, University of Amsterdam, P.O. Box 94485, 1090 GL Amsterdam, The Netherlands
| | - Kinga A Lőrincz
- Institute of Physics, University of Amsterdam, P.O. Box 94485, 1090 GL Amsterdam, The Netherlands
| | - Wendelin J Wright
- Department of Mechanical Engineering, Bucknell University, One Dent Drive, Lewisburg, PA 17837.,Department of Chemical Engineering, Bucknell University, One Dent Drive, Lewisburg, PA 17837
| | - Todd C Hufnagel
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Aya Nawano
- Department of Physics, University of Illinois at Urbana Champaign, 1110 West Green Street, Urbana, IL 61801
| | - Xiaojun Gu
- Department of Mechanical Engineering, Bucknell University, One Dent Drive, Lewisburg, PA 17837
| | | | - Karin A Dahmen
- Department of Physics, University of Illinois at Urbana Champaign, 1110 West Green Street, Urbana, IL 61801
| | - Peter Schall
- Institute of Physics, University of Amsterdam, P.O. Box 94485, 1090 GL Amsterdam, The Netherlands
| |
Collapse
|
45
|
Leishangthem P, Parmar ADS, Sastry S. The yielding transition in amorphous solids under oscillatory shear deformation. Nat Commun 2017; 8:14653. [PMID: 28248289 PMCID: PMC5337995 DOI: 10.1038/ncomms14653] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/13/2017] [Indexed: 11/17/2022] Open
Abstract
Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition. The onset of yielding can be difficult to define unambiguously for amorphous materials. Here the authors undertake computer simulations of model glasses of varying system sizes and show that, under oscillatory shear, they exhibit a sharp transition independent of preparation history.
Collapse
Affiliation(s)
- Premkumar Leishangthem
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Anshul D S Parmar
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India.,TIFR Center for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Srikanth Sastry
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
46
|
Karimi K, Ferrero EE, Barrat JL. Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids. Phys Rev E 2017; 95:013003. [PMID: 28208493 DOI: 10.1103/physreve.95.013003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 11/07/2022]
Abstract
By means of a finite elements technique we solve numerically the dynamics of an amorphous solid under deformation in the quasistatic driving limit. We study the noise statistics of the stress-strain signal in the steady-state plastic flow, focusing on systems with low internal dissipation. We analyze the distributions of avalanche sizes and durations and the density of shear transformations when varying the damping strength. In contrast to avalanches in the overdamped case, dominated by the yielding point universal exponents, inertial avalanches are controlled by a nonuniversal damping-dependent feedback mechanism, eventually turning negligible the role of correlations. Still, some general properties of avalanches persist and new scaling relations can be proposed.
Collapse
Affiliation(s)
- Kamran Karimi
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Ezequiel E Ferrero
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Jean-Louis Barrat
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
47
|
Irani E, Chaudhuri P, Heussinger C. Athermal rheology of weakly attractive soft particles. Phys Rev E 2016; 94:052608. [PMID: 27967137 DOI: 10.1103/physreve.94.052608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 06/06/2023]
Abstract
We study the rheology of a soft particulate system where the interparticle interactions are weakly attractive. Using extensive molecular dynamics simulations, we scan across a wide range of packing fractions (ϕ), attraction strengths (u), and imposed shear rates (γ[over ̇]). In striking contrast to repulsive systems, we find that at small shear rates generically a fragile isostatic solid is formed even if we go to ϕ≪ϕ_{J}. Further, with increasing shear rates, even at these low ϕ, nonmonotonic flow curves occur which lead to the formation of persistent shear bands in large enough systems. By tuning the damping parameter, we also show that inertia plays an important role in this process. Furthermore, we observe enhanced particle dynamics in the attraction-dominated regime as well as a pronounced anisotropy of velocity and diffusion constant, which we take as precursors to the formation of shear bands. At low enough ϕ, we also observe structural changes via the interplay of low shear rates and attraction with the formation of microclusters and voids. Finally, we characterize the properties of the emergent shear bands, and thereby, we find surprisingly small mobility of these bands, leading to prohibitively long time scales and extensive history effects in ramping experiments.
Collapse
Affiliation(s)
- Ehsan Irani
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Pinaki Chaudhuri
- Institute of Mathematical Sciences, Taramani, Chennai 600 113, Tamil Nadu, India
| | - Claus Heussinger
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
48
|
Tyukodi B, Patinet S, Roux S, Vandembroucq D. From depinning transition to plastic yielding of amorphous media: A soft-modes perspective. Phys Rev E 2016; 93:063005. [PMID: 27415352 DOI: 10.1103/physreve.93.063005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 06/06/2023]
Abstract
A mesoscopic model of amorphous plasticity is discussed in the context of depinning models. After embedding in a d+1-dimensional space, where the accumulated plastic strain lives along the additional dimension, the gradual plastic deformation of amorphous media can be regarded as the motion of an elastic manifold in a disordered landscape. While the associated depinning transition leads to scaling properties, the quadrupolar Eshelby interactions at play in amorphous plasticity induce specific additional features like shear-banding and weak ergodicity breakdown. The latters are shown to be controlled by the existence of soft modes of the elastic interaction, the consequence of which is discussed in the context of depinning.
Collapse
Affiliation(s)
- Botond Tyukodi
- PMMH, ESPCI/CNRS-UMR 7636/Université Paris 6 UPMC/Université Paris 7 Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05, France
- Physics Department, University Babeş-Bolyai, Cluj, Romania
| | - Sylvain Patinet
- PMMH, ESPCI/CNRS-UMR 7636/Université Paris 6 UPMC/Université Paris 7 Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Stéphane Roux
- LMT, ENS-Cachan/CNRS-UMR 8535/Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
| | - Damien Vandembroucq
- PMMH, ESPCI/CNRS-UMR 7636/Université Paris 6 UPMC/Université Paris 7 Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| |
Collapse
|
49
|
Papanikolaou S. Shearing a glass and the role of pinning delay in models of interface depinning. Phys Rev E 2016; 93:032610. [PMID: 27078417 DOI: 10.1103/physreve.93.032610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 11/07/2022]
Abstract
When a disordered solid is sheared, yielding is followed by the onset of intermittent response that is characterized by slip in local regions usually labeled shear-transformation zones. Such intermittent response resembles the behavior of earthquakes or contact depinning, where a well-defined landscape of pinning disorder prohibits the deformation of an elastic medium. Nevertheless, a disordered solid is evidently different in that pinning barriers of particles are due to neighbors that are also subject to motion. Microscopic yielding leads to destruction of the local microstructure and local heating. It is natural to assume that locally a liquid emerges for a finite timescale before cooling down to a transformed configuration. For including this characteristic transient in glass depinning models, we propose a general mechanism that involves a "pinning delay" time T(pd), during which each region that slipped evolves as a fluid. The new timescale can be as small as a single avalanche time step. This is a local, effective, and dynamical in nature mechanism that may be thought as dynamical softening. We demonstrate that the inclusion of this mechanism causes a drift of the critical exponents toward higher values for the slip sizes τ, until a transition to permanent shear-banding behavior happens causing almost oscillatory, stick-slip response. Moreover, it leads to a proliferation of large events that are highly inhomogeneous and resemble sharp slip band formation.
Collapse
Affiliation(s)
- Stefanos Papanikolaou
- Department of Mechanical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA and Hopkins Extreme Materials Institute, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
50
|
Liu C, Ferrero EE, Puosi F, Barrat JL, Martens K. Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition. PHYSICAL REVIEW LETTERS 2016; 116:065501. [PMID: 26918998 DOI: 10.1103/physrevlett.116.065501] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 06/05/2023]
Abstract
We study stress time series caused by plastic avalanches in athermally sheared disordered materials. Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-rate dependence of the stress-drop duration and size distributions together with their average temporal shape. We find critical exponents different from mean-field predictions, and a clear asymmetry for individual avalanches. We probe scaling relations for the rate dependency of the dynamics and we report a crossover towards mean-field results for strong driving.
Collapse
Affiliation(s)
- Chen Liu
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Ezequiel E Ferrero
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Francesco Puosi
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
- Ecole Normale Supérieure de Lyon, Laboratoire de Physique CNRS, 46 allée d'Italie, 69364 Lyon Cedex 7, France
| | - Jean-Louis Barrat
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Kirsten Martens
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|