1
|
Krott LB, Puccinelli T, Bordin JR. Core-softened colloid under extreme geometrical confinement. SOFT MATTER 2024; 20:4681-4691. [PMID: 38739368 DOI: 10.1039/d4sm00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Geometrical constraints offer a promising strategy for assembling colloidal crystal structures that are not typically observed in bulk or under 2D conditions. Core-softened colloids, in particular, have emerged as versatile chemical building blocks with applications across various scientific and technological areas. In this study, we investigate the behavior of a core-softened model confined between two parallel walls. Employing molecular dynamics simulations, we analyze the system's response under extreme confinement, where only one or two layers of colloids are permitted. The system comprises particles modeled by a ramp-like potential confined within slit nanoslits created by two flat, purely repulsive walls with a lateral side L separated by a distance Lz. Through a systematic analysis of the phase behavior as Lz increases, or as the system undergoes decompression, for different values of L, we identified a mono-to-bilayer transition associated with changes in the colloidal structure. In the monolayer regime, we observed solid phases at lower densities than those observed in the 2D case. Importantly, we demonstrated that confinement at specific Lz values, allowing particle arrangement into two layers, can lead to the emergence of the square phase, which was not observed under monolayer or 2D conditions. By correlating thermodynamic, translational, and orientational ordering, as well as the dynamics of this confined colloidal system, our findings offer valuable insights into the utilization of geometrical constraints to induce and manipulate structural changes.
Collapse
Affiliation(s)
- Leandro B Krott
- Centro de Ciências, Tecnologias e Saúde, Campus Araranguá, Universidade Federal de Santa Catarina. Rua Pedro João Pereira, 150, CEP 88905120, Araranguá, SC, Brazil.
| | - Thiago Puccinelli
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas. Caixa Postal 354, CEP 96001-970, Pelotas, RS, Brazil.
| | - José Rafael Bordin
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas. Caixa Postal 354, CEP 96001-970, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Tonel MZ, Abal JPK, Fagan SB, Barbosa MC. Ab initio study of water anchored in graphene pristine and vacancy-type defects. J Mol Model 2023; 29:198. [PMID: 37268861 DOI: 10.1007/s00894-023-05611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
CONTEXT In this paper, we have addressed two issues that are relevant to the interaction of water in pristine and vacant graphene through first-principles calculations based on the Density Functional Theory (DFT). The results showed that for the interaction of pristine graphene with water, the DOWN configuration (with the hydrogen atoms facing downwards) was the most stable, presenting binding energies in the order of -13.62 kJ/mol at a distance of 2.375 Å in the TOP position. We also evaluated the interaction of water with two vacancy models, removing one carbon atom (Vac-1C) and four atoms (Vac-4C). In the Vac-1C system, the most favourable system was the DOWN configuration, with binding energies ranging from -20.60 kJ/mol to -18.41 kJ/mol in the TOP and UP positions, respectively. A different behaviour was observed for the interaction of water with Vac-4C; regardless of the configuration of the water, it is always more favourable for the interaction to occur through the vacancy centre, with binding energies between -13.28 kJ/mol and -20.49 kJ/mol. Thus, the results presented open perspectives for the technological development of nanomembranes as well as providing a better understanding of the wettability effects of graphene sheets, whether pristine or with defects. METHOD We evaluated the interaction of pristine and vacant graphene with the water molecule, through calculations based on Density Functional Theory (DFT); implemented by the SIESTA program. The electronic, energetic, and structural properties were analyzed by solving self-consistent Kohn-Sham equations. In all calculations, a double ζ plus a polarized function (DZP) was used for the numerical baise set. Local Density Approximation (LDA) with the Perdew and Zunger (PZ) parameterisation along with a basis set superposition error (BSSE) correction were used to describe the exchange and correlation potential (Vxc). The water and isolated graphene structures were relaxed until the residual forces were less than 0.05 eV/Å-1 in all atomic coordinates.
Collapse
Affiliation(s)
- Mariana Zancan Tonel
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil.
| | - João Pedro Kleinubing Abal
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| | - Solange Binotto Fagan
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| | - Marcia Cristina Barbosa
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
3
|
Wei X, Wu CM, Li YR. Atomistic investigation on the kinetic behavior of vapour adsorption and cluster evolution using a statistical rate theory approach. Phys Chem Chem Phys 2021; 23:18058-18067. [PMID: 34387292 DOI: 10.1039/d1cp02800f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic behavior of vapor adsorption on a solid surface in an isobaric-isothermal system is investigated by means of molecular dynamics simulations combined with theoretical studies through a statistical rate theory approach. The molecular insights into the formation and evolution of clusters in the adsorbate are presented. Results show that the argon vapor is adsorbed on the silicon surface as different types of clusters. In the initial stage of adsorption, the empty adsorption sites on the surface decrease, and the adsorbed single-molecule-cluster grows rapidly and dominates the interface. The increasing rate of the adsorbed cluster and the declining rate of the empty adsorption site are dependent on the pressure ratio. For a large pressure ratio, the single-molecule-clusters are aggregated to incubate large clusters, and the fraction of a single-molecule-cluster is decreased with time. When the adsorption isotherm is determined, the chemical potential of the adsorbed cluster is expressed from the zeta isotherm model. Then the adsorption kinetics are analyzed through the statistical rate theory. The molecular exchange rate and the instantaneous driving force are calculated. The higher pressure ratio induces the larger chemical potential difference and accelerates the net adsorption rate. The adsorption kinetics derived from MD simulations are in close agreement with the theoretical analysis of the statistical rate theory.
Collapse
Affiliation(s)
- Xiang Wei
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | | | | |
Collapse
|
4
|
Liu K, Wang Y, Du Z, Zhang C, Mi J. Anisotropic Dynamics of Binary Particles in Confined Geometries. Chemphyschem 2020; 21:531-539. [DOI: 10.1002/cphc.201901163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/06/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Kun Liu
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
- Changzhou Institute of Advanced MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Zhongjie Du
- Changzhou Institute of Advanced MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Chen Zhang
- Changzhou Institute of Advanced MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
5
|
Fomin YD, Gaiduk EA, Tsiok EN, Ryzhov VN. The phase diagram and melting scenarios of two-dimensional Hertzian spheres. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1464676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yu. D. Fomin
- Institute for High Pressure Physics RAS, Moscow, Russia
| | - E. A. Gaiduk
- Institute for High Pressure Physics RAS, Moscow, Russia
| | - E. N. Tsiok
- Institute for High Pressure Physics RAS, Moscow, Russia
| | - V. N. Ryzhov
- Institute for High Pressure Physics RAS, Moscow, Russia
| |
Collapse
|
6
|
Kuwahara T, Moras G, Moseler M. Friction Regimes of Water-Lubricated Diamond (111): Role of Interfacial Ether Groups and Tribo-Induced Aromatic Surface Reconstructions. PHYSICAL REVIEW LETTERS 2017; 119:096101. [PMID: 28949557 DOI: 10.1103/physrevlett.119.096101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H_{2}O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H_{2}O dissociation yield dense H/OH surface passivation leading to another ultralow friction regime.
Collapse
Affiliation(s)
- Takuya Kuwahara
- Fraunhofer IWM, MicroTribology Center μTC, Wöhlerstraße 11, 79108 Freiburg, Germany
| | - Gianpietro Moras
- Fraunhofer IWM, MicroTribology Center μTC, Wöhlerstraße 11, 79108 Freiburg, Germany
| | - Michael Moseler
- Fraunhofer IWM, MicroTribology Center μTC, Wöhlerstraße 11, 79108 Freiburg, Germany
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Ferrara CG, Grigera TS. Dynamics and structural behavior of water in large confinement with planar amorphous walls. J Chem Phys 2017; 147:024705. [PMID: 28711040 DOI: 10.1063/1.4991834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the structure and dynamics of liquid water confined between planar amorphous walls using molecular dynamics (MD) simulations. We report MD results for systems of more than 23 000 SPC/E water molecules confined between two hydrophilic or hydrophobic walls, separated by distances of about 15 nm. We find that the walls induce ordering of the liquid and slow down the dynamics, affecting the properties of the confined water up to distances of about 8 nm at 275 K. We quantify this influence by computing dynamic and static penetration lengths and studying their temperature dependence. Our results indicate that in the temperature range considered, hydrophobic walls perturb static properties over larger lengths compared to hydrophilic walls. We also find opposite temperature trends in the dynamic penetration lengths, with hydrophobic walls increasing their range of influence on increasing the temperature.
Collapse
Affiliation(s)
- C Gastón Ferrara
- Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Tomás S Grigera
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET and Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 59 No. 789, B1900BTE La Plata, Argentina
| |
Collapse
|
8
|
Gavazzoni C, Giovambattista N, Netz PA, Barbosa MC. Structure and mobility of water confined in AlPO 4-54 nanotubes. J Chem Phys 2017. [PMID: 28641422 DOI: 10.1063/1.4985626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed molecular dynamics simulations of water confined within AlPO4-54 nanotubes. AlPO4-54 is an artificial material made of AlO4 and of PO4 in tetrahedra arranged in a periodic structure forming pores of approximately 1.3 nm in diameter. This makes AlPO4-54 an excellent candidate for practical applications, such as for water filtration and desalination. In this work, the structural and dynamical properties of the confined water are analyzed for various temperatures and water loadings. We find that the water structure is controlled by the heterogeneity of the nanopore surface with the water molecules located preferentially next to the surface of oxygens of AlPO4-54; consequently, at very low densities, water forms helicoidal structures in string-like arrangements.
Collapse
Affiliation(s)
- Cristina Gavazzoni
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Nicolas Giovambattista
- Brooklyn College, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| | - Paulo A Netz
- Instituto de Química, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia C Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Bordin JR, Krott LB. How Competitive Interactions Affect the Self-Assembly of Confined Janus Dumbbells. J Phys Chem B 2017; 121:4308-4317. [DOI: 10.1021/acs.jpcb.7b01696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- José Rafael Bordin
- Campus Caçapava
do Sul, Universidade Federal do Pampa, Av. Pedro Anunciação,
111, CEP 96570-000, Caçapava do Sul, RS, Brazil
| | - Leandro B. Krott
- Centro Araranguá, Universidade Federal de Santa Catarina, Rua Pedro João Pereira, 150, CEP 88905-120, Araranguá, SC, Brazil
| |
Collapse
|
10
|
Foroutan M, Fatemi SM, Esmaeilian F. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:19. [PMID: 28229319 DOI: 10.1140/epje/i2017-11507-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.
Collapse
Affiliation(s)
- Masumeh Foroutan
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - S Mahmood Fatemi
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farshad Esmaeilian
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Lukšič M, Hribar-Lee B, Pizio O. Phase behaviour of a continuous shouldered well model fluid. A grand canonical Monte Carlo study. J Mol Liq 2017; 228:4-10. [PMID: 28450755 PMCID: PMC5403148 DOI: 10.1016/j.molliq.2016.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phase behavior of the continuous shouldered well model fluid proposed by Franzese [J. Mol. Liq. 136 (2007) 267] was examined using the Monte Carlo computer simulations in the grand canonical ensemble. The essential parts of the vapour-liquid and liquid-liquid coexistence envelopes were obtained. The Widom lines departing from coexistence envelopes were calculated using maxima of the fluctuations of the number of particles as a function of chemical potential along various isotherms. The region embracing anomalies in the properties of the model was located using the approximate criterion that involves the excess pair entropy.. The temperature of maximum density line was built by performing canonical Monte Carlo simulations. Our results are consistent with previous results from molecular dynamics constant pressure-constant temperature simulations and provide wider insight into the phase behavior of the model by using the chemical potential as the external parameter.
Collapse
Affiliation(s)
- Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of
Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of
Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Orest Pizio
- Instituto de Química, Universidad Nacional Autonoma de
México, Coyoacan, 04510, Cd. de México, México
| |
Collapse
|
12
|
B Krott L, Gavazzoni C, Bordin JR. Anomalous diffusion and diffusion anomaly in confined Janus dumbbells. J Chem Phys 2016; 145:244906. [PMID: 28049334 DOI: 10.1063/1.4972578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Self-assembly and dynamical properties of Janus nanoparticles have been studied by molecular dynamic simulations. The nanoparticles are modeled as dimers and they are confined between two flat parallel plates to simulate a thin film. One monomer from the dumbbells interacts by a standard Lennard-Jones potential and the other by a two-length scales shoulder potential, typically used for anomalous fluids. Here, we study the effects of removing the Brownian effects, typical from colloidal systems immersed in aqueous solution, and consider a molecular system, without the drag force and the random collisions from the Brownian motion. Self-assembly and diffusion anomaly are preserved in relation to the Brownian system. Additionally, a superdiffusive regime associated to a collective reorientation in a highly structured phase is observed. Diffusion anomaly and anomalous diffusion are explained in the two length scale framework.
Collapse
Affiliation(s)
- Leandro B Krott
- Centro Araranguá, Universidade Federal de Santa Catarina, Rua Pedro João Pereira, 150, CEP 88905-120 Araranguá, SC, Brazil
| | - Cristina Gavazzoni
- Instituto de Física, Univeridade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-570 Porto Alegre, RS, Brazil
| | - José Rafael Bordin
- Campus Caçapava do Sul, Universidade Federal do Pampa, Av. Pedro Anunciação, 111, CEP 96570-000 Caçapava do Sul, RS, Brazil
| |
Collapse
|
13
|
Bordin JR, Krott LB. Confinement effects on the properties of Janus dimers. Phys Chem Chem Phys 2016; 18:28740-28746. [DOI: 10.1039/c6cp05821c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show how the confinement between two parallel walls affects the self-assembly, and dynamic and thermodynamic properties of Janus dumbbells.
Collapse
Affiliation(s)
- José Rafael Bordin
- Campus Caçapava do Sul
- Universidade Federal do Pampa
- Caçapava do Sul
- Brazil
| | - Leandro B. Krott
- Centro Araranguá
- Universidade Federal de Santa Catarina
- Araranguá
- Brazil
| |
Collapse
|
14
|
Sun G, Giovambattista N, Xu L. Confinement effects on the liquid-liquid phase transition and anomalous properties of a monatomic water-like liquid. J Chem Phys 2015; 143:244503. [DOI: 10.1063/1.4937486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Gang Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| |
Collapse
|
15
|
Furlan AP, Fiore CE, Barbosa MC. Influence of disordered porous media on the anomalous properties of a simple water model. Phys Rev E 2015; 92:032404. [PMID: 26465479 DOI: 10.1103/physreve.92.032404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 11/06/2022]
Abstract
The thermodynamic, dynamic, and structural behavior of a water-like system confined in a matrix is analyzed for increasing confining geometries. The liquid is modeled by a two-dimensional associating lattice gas model that exhibits density and diffusion anomalies, similar to the anomalies present in liquid water. The matrix is a triangular lattice in which fixed obstacles impose restrictions to the occupation of the particles. We show that obstacles shorten all lines, including the phase coexistence, the critical and the anomalous lines. The inclusion of a very dense matrix not only suppresses the anomalies but also the liquid-liquid critical point.
Collapse
Affiliation(s)
- A P Furlan
- Instituto de Física, Univeridade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-570, Porto Alegre, RS, Brazil
| | - Carlos E Fiore
- Instituto de Física, Universidade de São Paulo, Caixa Postal 19044, 81531 São Paulo, SP, Brazil
| | - M C Barbosa
- Instituto de Física, Univeridade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-570, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Tsiok EN, Dudalov DE, Fomin YD, Ryzhov VN. Random pinning changes the melting scenario of a two-dimensional core-softened potential system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032110. [PMID: 26465429 DOI: 10.1103/physreve.92.032110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 06/05/2023]
Abstract
In experiments two-dimensional systems are realized mainly on solid substrates, which introduce quenched disorder due to some inherent defects. The defects of substrates influence the melting scenario of the systems and have to be taken into account in the interpretation of experimental results. We present the results of molecular dynamics simulations of a two-dimensional system with a core-softened potential in which a small fraction of the particles is pinned, inducing quenched disorder. Ppotentials of this type are widely used for the qualitative description of systems with waterlike anomalies. In our previous publications it was shown that the system demonstrates an anomalous melting scenario: at low densities the system melts through two continuous transitions in accordance with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory with an intermediate hexatic phase, while at high densities the conventional first-order melting transition takes place. We find that the well-known disorder-induced widening of the hexatic phase occurs at low densities, while in the high-density part of the phase diagram random pinning transforms the first-order melting into two transitions: a continuous KTHNY-like solid-hexatic transition and a first-order hexatic-isotropic liquid transition.
Collapse
Affiliation(s)
- E N Tsiok
- Institute for High Pressure Physics RAS, Kaluzhskoe shosse 14, 142190 Troitsk, Moscow, Russia
| | - D E Dudalov
- Institute for High Pressure Physics RAS, Kaluzhskoe shosse 14, 142190 Troitsk, Moscow, Russia
| | - Yu D Fomin
- Institute for High Pressure Physics RAS, Kaluzhskoe shosse 14, 142190 Troitsk, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - V N Ryzhov
- Institute for High Pressure Physics RAS, Kaluzhskoe shosse 14, 142190 Troitsk, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| |
Collapse
|
17
|
Krott LB, Bordin JR, Barraz NM, Barbosa MC. Effects of confinement on anomalies and phase transitions of core-softened fluids. J Chem Phys 2015; 142:134502. [PMID: 25854248 DOI: 10.1063/1.4916563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Leandro B. Krott
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - José Rafael Bordin
- Campus Caçapava do Sul, Universidade Federal do Pampa, Av. Pedro Anunciação, s/n, CEP 96570-000, Caçapava do Sul, RS, Brazil
| | - Ney M. Barraz
- Campus Cerro Largo, Universidade Federal da Fronteira Sul, Av. Jacob Reinaldo Haupenthal, 1580. CEP 97900-000, Cerro Largo, RS, Brazil
| | - Marcia C. Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Krott LB, Bordin JR, Barbosa MC. New Structural Anomaly Induced by Nanoconfinement. J Phys Chem B 2014; 119:291-300. [DOI: 10.1021/jp510561t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leandro B. Krott
- Instituto
de Física, Universidade Federal do Rio Grande do Sul, Caixa
Postal 15051, CEP 91501-970, Porto Alegre, RS Brazil
| | - José Rafael Bordin
- Campus
Caçapava do Sul, Universidade Federal do Pampa, Av. Pedro Anunciação,
s/n, CEP 96570-000, Caçapava do Sul, RS Brazil
| | - Marcia C. Barbosa
- Instituto
de Física, Universidade Federal do Rio Grande do Sul, Caixa
Postal 15051, CEP 91501-970, Porto Alegre, RS Brazil
| |
Collapse
|
19
|
Dudalov DE, Tsiok EN, Fomin YD, Ryzhov VN. Effect of a potential softness on the solid-liquid transition in a two-dimensional core-softened potential system. J Chem Phys 2014; 141:18C522. [DOI: 10.1063/1.4896825] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. E. Dudalov
- Institute for High Pressure Physics RAS, 142190 Kaluzhskoe shosse, 14, Troitsk, Moscow, Russia
| | - E. N. Tsiok
- Institute for High Pressure Physics RAS, 142190 Kaluzhskoe shosse, 14, Troitsk, Moscow, Russia
| | - Yu. D. Fomin
- Institute for High Pressure Physics RAS, 142190 Kaluzhskoe shosse, 14, Troitsk, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - V. N. Ryzhov
- Institute for High Pressure Physics RAS, 142190 Kaluzhskoe shosse, 14, Troitsk, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| |
Collapse
|
20
|
Bordin JR, Krott LB, Barbosa MC. High pressure induced phase transition and superdiffusion in anomalous fluid confined in flexible nanopores. J Chem Phys 2014; 141:144502. [DOI: 10.1063/1.4897956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- José Rafael Bordin
- Campus Caçapava do Sul, Universidade Federal do Pampa, Caixa Postal 15051, CEP 96570-000, Caçapava do Sul, RS, Brazil
| | - Leandro B. Krott
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Marcia C. Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Dudalov DE, Fomin YD, Tsiok EN, Ryzhov VN. How dimensionality changes the anomalous behavior and melting scenario of a core-softened potential system? SOFT MATTER 2014; 10:4966-4976. [PMID: 24888366 DOI: 10.1039/c4sm00124a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a computer simulation study of the phase diagram and anomalous behavior of two-dimensional (2D) and three-dimensional (3D) classical particles repelling each other through an isotropic core-softened potential. As in the analogous three-dimensional case, in 2D a reentrant-melting transition occurs upon compression under not too high pressure, along with a spectrum of thermodynamic and dynamic anomalies in the fluid phase. However, in two dimensions the order of the region of anomalous diffusion and the region of structural anomaly is inverted in comparison with the 3D case, where there exists a water-like sequence of anomalies, and has a silica-like sequence. In the low density part of the 2D phase diagram, melting is a continuous two-stage transition, with an intermediate hexatic phase. All available evidence supports the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario for this melting transition. On the other hand, at high density part of the phase diagram one first-order transition takes place.
Collapse
Affiliation(s)
- D E Dudalov
- Institute for High Pressure Physics RAS, 142190 Kaluzhskoe shosse, 14, Troitsk, Moscow, Russia.
| | | | | | | |
Collapse
|
22
|
Bordin JR, Andrade JS, Diehl A, Barbosa MC. Enhanced flow of core-softened fluids through narrow nanotubes. J Chem Phys 2014; 140:194504. [DOI: 10.1063/1.4876555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Dudalov DE, Fomin YD, Tsiok EN, Ryzhov VN. Anomalous melting scenario of the two-dimensional core-softened system. PHYSICAL REVIEW LETTERS 2014; 112:157803. [PMID: 24785074 DOI: 10.1103/physrevlett.112.157803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Indexed: 06/03/2023]
Abstract
We present a computer simulation study of the phase behavior of two-dimensional (2D) classical particles repelling each other through an isotropic core-softened potential. As in the analogous three-dimensional (3D) case, a reentrant-melting transition occurs upon compression for not too high pressures, along with a spectrum of waterlike anomalies in the fluid phase. However, in two dimensions in the low density part of the phase diagram melting is a continuous two-stage transition, with an intermediate hexatic phase. All available evidence supports the Kosterlitz-Thouless-Halperin-Nelson-Young scenario for this melting transition. On the other hand, at the high density part of the phase diagram one first-order transition takes place.
Collapse
Affiliation(s)
- D E Dudalov
- Institute for High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, 142190 Moscow, Russia
| | - Yu D Fomin
- Institute for High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, 142190 Moscow, Russia and Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - E N Tsiok
- Institute for High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, 142190 Moscow, Russia
| | - V N Ryzhov
- Institute for High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, 142190 Moscow, Russia and Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| |
Collapse
|