1
|
Seifollahi Z, Ashrafizadeh SN. Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Seifollahi Z, Ashrafizadeh SN. Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels. Colloids Surf B Biointerfaces 2022; 216:112545. [PMID: 35561637 DOI: 10.1016/j.colsurfb.2022.112545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Electrokinetic phenomena, especially electroosmosis in ion-selective environments, play a key role in many systems, from ion-selective nanopores to cellular processes. In this paper, the impact of ionic size on the electroosmotic flow through an ion-selective soft slit nanochannel is analytically studied. Meanwhile, the modified Poisson-Boltzmann and the modified Navier-Stokes equations were used for modeling the electrostatics and the electrohydrodynamics of the problem, respectively, and the derived equations were solved by linearizing method. The results reveal the importance of considering the effect of ionic size in the calculation, as the steric effects, especially at high charge densities of polyelectrolytes (PELs), dramatically alter both the ions arrangement and the electric potential; and amplify the electroosmotic flow. Considering Debye-Huckel parameters of 4 and 10 for the electrolyte layer and the PEL, respectively, we demonstrate that the dimensionless electroosmotic velocity in a soft nanochannel having a dimensionless soft layer thickness of 0.2, from 3.2 by ignoring the steric effect, can reach the value of 6 by considering the steric effect of ν=0.3.
Collapse
Affiliation(s)
- Zahra Seifollahi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
3
|
Bruch D, Balzer C, Wang ZG. Thermodynamics of Electrolyte Solutions Near Charged Surfaces: Constant Surface Charge vs. Constant Surface Potential. J Chem Phys 2022; 156:174704. [DOI: 10.1063/5.0089260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electric double layers are ubiquitous in science and engineering and are of current interest, owing to their applications in the stabilization of colloidal suspensions and as supercapacitors. While the structure and properties of electric double layers in electrolyte solutions near a charged surface are well characterized, there are subtleties in calculating thermodynamic properties from the free energy of a system with charged surfaces. These subtleties arise from the difference in the free energy between systems with constant surface charge and constant surface potential. In this work, we present a systematic, pedagogical framework to properly account for the different specifications on charged bodies in electrolyte solutions. Our approach is fully variational---that is, all free energies, boundary conditions, relevant electrostatic equations, and thermodynamic quantities are systematically derived using variational principles of thermodynamics. We illustrate our approach by considering a simple electrolyte solution between two charged surfaces using the Poisson--Boltzmann theory. Our results highlight the importance of using the proper thermodynamic potential and provide a general framework for calculating thermodynamic properties of electrolyte solutions near charged surfaces. Specifically, we present the calculation of the pressure and the surface tension between two charged surfaces for different boundary conditions, including mixed boundary conditions.
Collapse
Affiliation(s)
- Dorian Bruch
- Chemistry and Chemical Engineering, California Institute of Technology Division of Chemistry and Chemical Engineering, United States of America
| | | | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, United States of America
| |
Collapse
|
4
|
Zhang J, Zhan K, Wang S, Hou X. Soft interface design for electrokinetic energy conversion. SOFT MATTER 2020; 16:2915-2927. [PMID: 32159200 DOI: 10.1039/c9sm02506e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The exploitation and utilization of renewable clean energy is of great significance to the sustainable development of society. Electrokinetic energy conversion (EKEC) based on micro/nanochannels is expected to provide immense potential for ocean energy harvesting, self-powered micro/nanodevices, and small portable power supplies through converting environmental energy into electrical energy. Herein, aiming to get a deeper understanding of EKEC based on micro/nanochannels, several classic theoretical models and corresponding calculation equations are introduced briefly. For high efficiency energy conversion, it is essential to clearly discuss the interface properties between the inner surface of the channel and the bulk electrolyte solution. Therefore, we put forward soft interface designs of solid-liquid and liquid-liquid interfaces, and summarize their recent progress. In addition, the different applications of EKEC, harvesting from environmental energy, are further discussed. We hope that this review will attract more scientists' attention to transform the experimental results of EKEC systems in the lab into available products on shelves.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen 361005, Fujian, P. R. China.
| | | | | | | |
Collapse
|
5
|
Sachar HS, Sivasankar VS, Das S. Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law. SOFT MATTER 2019; 15:559-574. [PMID: 30520929 DOI: 10.1039/c8sm02163e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we develop a theory to account for the effect of excluded volume (EV) interactions in the strong stretching theory (SST) based description of pH-responsive polyelectrolyte (PE) brushes. The existing studies have considered the PE brushes to be present in a θ-solvent and hence have neglected the EV interactions; however, such a consideration cannot describe the situations where the pH-responsive brushes are in a "good" solvent. Secondly, we consider a more expanded form of the mass action law, governing the pH-dependent ionization of the PE molecules, in the SST description of the PE brushes. This expanded form of the mass action law considers different values of γa3 (γ is the density of chargeable sites on the PE molecule and a is the PE Kuhn length) and therefore is an improvement over the existing SST models of PE brushes as well as other theories involving pH-responsive PE molecules that always consider γa3 = 1. Our results demonstrate that the EV effects enhance the brush height by inducing additional PE inter-segmental repulsion. Similarly, the consideration of the expanded form of the mass action law would lead to a reduced (enhanced) brush height for γa3 < 1 (γa3 > 1). We also quantify variables such as the monomer density distribution, the distribution of the ends of the PE brush, and the EDL electrostatic potential and explain their differences with respect to those obtained with no EV interactions or γa3 = 1.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | | | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| |
Collapse
|
6
|
The role of ion partitioning in electrohydrodynamic characteristics of soft nanofluidics: Inclusion of EDL overlap and steric effects. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Maheedhara RS, Sachar HS, Jing H, Das S. Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes. J Phys Chem B 2018; 122:7450-7461. [DOI: 10.1021/acs.jpcb.8b04827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Raja Sampath Maheedhara
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Haoyuan Jing
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Softness Induced Enhancement in Net Throughput of Non-Linear Bio-Fluids in Nanofluidic Channel under EDL Phenomenon. Sci Rep 2018; 8:7893. [PMID: 29777120 PMCID: PMC5959933 DOI: 10.1038/s41598-018-26056-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
In this article, we describe the electro-hydrodynamics of non-Newtonian fluid in narrow fluidic channel with solvent permeable and ion-penetrable polyelectrolyte layer (PEL) grafted on channel surface with an interaction of non-overlapping electric double layer (EDL) phenomenon. In this analysis, we integrate power-law model in the momentum equation for describing the non-Newtonian rheology. The complex interplay between the non-Newtonian rheology and interfacial electrochemistry in presence of PEL on the walls leads to non-intuitive variations in the underlying flow dynamics in the channels. As such, we bring out the variations in flow dynamics and their implications on the net throughput in the channel in terms of different parameters like power-law index (n), drag parameter (α), PEL thickness (d) and Debye length ratio (κ/κPEL) are discussed. We show, in this analysis, a relative enhancement in the net throughput through a soft nanofluidic channel for both the shear-thinning and shear-thickening fluids, attributed to the stronger electrical body forces stemming from ionic interactions between polyelectrolyte layer and electrolyte layer. Also, we illustrate that higher apparent viscosity inherent with the class of shear-thickening fluid weakens the softness induced enhancement in the volumetric flow rate for the shear-thickening fluids, since the viscous drag offered to the f low f ield becomes higher for the transport of shear-thickening fluid.
Collapse
|
9
|
Sin JS, Kim UH. Ion size effect on electrostatic and electroosmotic properties in soft nanochannels with pH-dependent charge density. Phys Chem Chem Phys 2018; 20:22961-22971. [DOI: 10.1039/c8cp04185g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a theoretical study of the ion size effect on various properties in a soft nanochannel with pH-dependent charge density.
Collapse
Affiliation(s)
- Jun-Sik Sin
- Department of Physics, Kim Il Sung University
- Pyongyang
- Democratic People's Republic of Korea
- Natural Science Center, Kim Il Sung University
- Pyongyang
| | - Un-Hyok Kim
- Institute of Environmental Science and Water Technology, Academy of Sciences
- Pyongyang
- Democratic People's Republic of Korea
| |
Collapse
|
10
|
Sin JS, Kim NH, Sin CS. Effect of solvent polarization on electric double layer of a charged soft surface in an electrolyte solution. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Chen G, Das S. Anomalous Shrinking–Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects. J Phys Chem B 2016; 120:6848-57. [DOI: 10.1021/acs.jpcb.6b04636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guang Chen
- Department
of Mechanical
Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department
of Mechanical
Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Oh JM, Kang IS. Ion size effects on the osmotic pressure and electrocapillarity in a nanoslit: Symmetric and asymmetric ion sizes. Phys Rev E 2016; 93:063112. [PMID: 27415363 DOI: 10.1103/physreve.93.063112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 06/06/2023]
Abstract
We analyze the effect of asymmetric finite ion size in nanoconfinement in the view of osmotic pressure and electrocapillarity. When the confinement width becomes comparable with the Debye length, the overlapped electric double layer is significantly deformed by the steric effects. We derive the osmotic pressure from the modified Poisson-Boltzmann equation in a nanoslit to examine the deviation from the ideal osmotic pressure and the repulsive force on the wall considering the asymmetry of ion sizes. Then the electrocapillarity due to the steric effect is investigated under constant potential condition with the flat interface assumption. Later, the deformation by the electrocapillarity is also considered in the first order approximation.
Collapse
Affiliation(s)
- J M Oh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), 50 UNIST-gil, Ulju-gun 44919, Republic of Korea
| | - I S Kang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
13
|
Das S, Banik M, Chen G, Sinha S, Mukherjee R. Polyelectrolyte brushes: theory, modelling, synthesis and applications. SOFT MATTER 2015; 11:8550-83. [PMID: 26399305 DOI: 10.1039/c5sm01962a] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte (PE) brushes are a special class of polymer brushes (PBs) containing charges. Polymer chains attain "brush"-like configuration when they are grafted or get localized at an interface (solid-fluid or liquid-fluid) with sufficiently close proximity between two-adjacent grafted polymer chains - such a proximity triggers a particular nature of interaction between the adjacent polymer molecules forcing them to stretch orthogonally to the grafting interface, instead of random-coil arrangement. In this review, we discuss the theory, synthesis, and applications of PE brushes. The theoretical discussion starts with the standard scaling concepts for polymer and PE brushes; following that, we shed light on the state of the art in continuum modelling approaches for polymer and PE brushes directed towards analysis beyond the scaling calculations. A special emphasis is laid in pinpointing the cases for which the PE electrostatic effects can be de-coupled from the PE entropic and excluded volume effects; such de-coupling is necessary to appropriately probe the complicated electrostatic effects arising from pH-dependent charging of the PE brushes and the use of these effects for driving liquid and ion transport at the interfaces covered with PE brushes. We also discuss the atomistic simulation approaches for polymer and PE brushes. Next we provide a detailed review of the existing approaches for the synthesis of polymer and PE brushes on interfaces, nanoparticles, and nanochannels, including mixed brushes and patterned brushes. Finally, we discuss some of the possible applications and future developments of polymer and PE brushes grafted on a variety of interfaces.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Meneka Banik
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin - 721302, Kharagpur, West Bengal, India
| | - Guang Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Shayandev Sinha
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin - 721302, Kharagpur, West Bengal, India
| |
Collapse
|
14
|
McDaniel K, Valcius F, Andrews J, Das S. Electrostatic potential distribution of a soft spherical particle with a charged core and pH-dependent charge density. Colloids Surf B Biointerfaces 2015; 127:143-7. [DOI: 10.1016/j.colsurfb.2015.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/11/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
15
|
Chen G, Das S. Electrostatics of soft charged interfaces with pH-dependent charge density: effect of consideration of appropriate hydrogen ion concentration distribution. RSC Adv 2015. [DOI: 10.1039/c4ra13946a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Explicit consideration of hydrogen ion concentration for describing the electrostatics of grafted polyelectrolyte layers with pH-dependent charge density exhibits the necessity of considering a non-uniform depth dependent monomer distribution.
Collapse
Affiliation(s)
- Guang Chen
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | - Siddhartha Das
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| |
Collapse
|
16
|
Andrews J, Das S. Effect of finite ion sizes in electric double layer mediated interaction force between two soft charged plates. RSC Adv 2015. [DOI: 10.1039/c5ra03476k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A new theory quantifies the effect of finite ion size in osmotic pressure (Πosm) between two soft charged plates.
Collapse
Affiliation(s)
- Joseph Andrews
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | - Siddhartha Das
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| |
Collapse
|
17
|
Das S. Explicit interrelationship between Donnan and surface potentials and explicit quantification of capacitance of charged soft interfaces with pH-dependent charge density. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Chanda S, Sinha S, Das S. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. SOFT MATTER 2014; 10:7558-7568. [PMID: 25112236 DOI: 10.1039/c4sm01490a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper we provide analytical solutions for the streaming potential and electroviscous effects in soft nanochannels. The analysis is based on the solution of the linearized Poisson-Boltzmann equation, valid for small electrostatic potentials. We identify the important dimensionless parameters that dictate these two effects. Results are provided for a large range of electric double layer (EDL) thickness values, spanning from the case of very thin to very large overlapped EDL thicknesses. We compare the results with those of a rigid nanochannel, having zeta potential equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanochannels. For the soft nanochannel, the streaming potential varies very weakly with the EDL thickness and can be substantially larger than that corresponding to the rigid nanochannel. The electroviscous effects for the soft nanochannel, unlike the rigid nanochannel, virtually always exhibit a monotonic decrease with the EDL thickness, and for certain parameter ranges can be several times larger than that for a rigid nanochannel. Most importantly, for the soft nanochannels the electrochemomechanical energy conversion, associated with the generation of streaming potential, is found to be highly efficient, with the efficiency being several times higher than that of a rigid nanochannel.
Collapse
Affiliation(s)
- Sourayon Chanda
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8
| | | | | |
Collapse
|
19
|
Das S, Chanda S, Eijkel JCT, Tas NR, Chakraborty S, Mitra SK. Filling of charged cylindrical capillaries. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:043011. [PMID: 25375597 DOI: 10.1103/physreve.90.043011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Indexed: 06/04/2023]
Abstract
We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because of decreased velocity gradients at the wall. Both these effects essentially stem from the spontaneous formation of an electric double layer (EDL) and the resulting streaming potential caused by the net capillary-flow-driven advection of ionic species within the EDL. Our results demonstrate that filling of charged capillaries also exhibits the well-known linear and Washburn regimes witnessed for uncharged capillaries, although the filling rate is always lower than that of the uncharged capillary. We attribute this to a competitive success of the lowering of the driving forces (because of electroviscous effects), in comparison to the effect of weaker drag forces. We further reveal that the time at which the transition between the linear and the Washburn regime occurs may become significantly altered with the introduction of surface charges, thereby altering the resultant capillary dynamics in a rather intricate manner.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Sourayon Chanda
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8
| | - J C T Eijkel
- BIOS, The Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - N R Tas
- Transducers Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur-721302, India
| | - Sushanta K Mitra
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada M3J1P3
| |
Collapse
|