• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (87)
For: Siena M, Riva M, Hyman JD, Winter CL, Guadagnini A. Relationship between pore size and velocity probability distributions in stochastically generated porous media. Phys Rev E Stat Nonlin Soft Matter Phys 2014;89:013018. [PMID: 24580331 DOI: 10.1103/physreve.89.013018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 06/03/2023]
Number Cited by Other Article(s)
1
Transport in mazes; simple geometric representations to guide the design of engineered systems. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
2
Nguyen VT, Papavassiliou DV. Velocity Magnitude Distribution for Flow in Porous Media. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
3
Wu R, Zhao CY. Distribution of liquid flow in a pore network during evaporation. Phys Rev E 2021;104:025107. [PMID: 34525656 DOI: 10.1103/physreve.104.025107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 11/07/2022]
4
Flow Path Resistance in Heterogeneous Porous Media Recast into a Graph-Theory Problem. Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
5
Weigand TM, Miller CT. Microscale modeling of nondilute flow and transport in porous medium systems. Phys Rev E 2020;102:033104. [PMID: 33075978 DOI: 10.1103/physreve.102.033104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
6
Guédon GR, Inzoli F, Riva M, Guadagnini A. Pore-scale velocities in three-dimensional porous materials with trapped immiscible fluid. Phys Rev E 2019;100:043101. [PMID: 31770872 DOI: 10.1103/physreve.100.043101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 11/07/2022]
7
Aboufoul M, Chiarelli A, Triguero I, Garcia A. Virtual porous materials to predict the air void topology and hydraulic conductivity of asphalt roads. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.04.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
8
Upscaling of Anomalous Pore-Scale Dispersion. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01273-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
9
Aramideh S, Vlachos PP, Ardekani AM. Pore-scale statistics of flow and transport through porous media. Phys Rev E 2018;98:013104. [PMID: 30110739 DOI: 10.1103/physreve.98.013104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 06/08/2023]
10
Carrel M, Morales VL, Dentz M, Derlon N, Morgenroth E, Holzner M. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling. WATER RESOURCES RESEARCH 2018;54:2183-2198. [PMID: 29780184 PMCID: PMC5947749 DOI: 10.1002/2017wr021726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/25/2018] [Indexed: 05/30/2023]
11
Effects of Pore-Scale Geometry and Wettability on Two-Phase Relative Permeabilities within Elementary Cells. WATER 2017. [DOI: 10.3390/w9040252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
12
Fouxon I, Holzner M. Solvable continuous-time random walk model of the motion of tracer particles through porous media. Phys Rev E 2016;94:022132. [PMID: 27627271 DOI: 10.1103/physreve.94.022132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 11/07/2022]
13
Jin C, Langston PA, Pavlovskaya GE, Hall MR, Rigby SP. Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media. Phys Rev E 2016;93:013122. [PMID: 26871169 DOI: 10.1103/physreve.93.013122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 11/07/2022]
14
Hormann K, Baranau V, Hlushkou D, Höltzel A, Tallarek U. Topological analysis of non-granular, disordered porous media: determination of pore connectivity, pore coordination, and geometric tortuosity in physically reconstructed silica monoliths. NEW J CHEM 2016. [DOI: 10.1039/c5nj02814k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
15
Matyka M, Gołembiewski J, Koza Z. Power-exponential velocity distributions in disordered porous media. Phys Rev E 2016;93:013110. [PMID: 26871158 DOI: 10.1103/physreve.93.013110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 06/05/2023]
16
Holzner M, Morales VL, Willmann M, Dentz M. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;92:013015. [PMID: 26274277 DOI: 10.1103/physreve.92.013015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 06/04/2023]
17
Chiarelli A, Dawson A, García A. Generation of virtual asphalt mixture porosity for computational modelling. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.01.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA