1
|
Weidig D, Wagner J. Coupled dynamics in binary mixtures of model colloidal Yukawa systems. SOFT MATTER 2024; 20:8897-8908. [PMID: 39485293 DOI: 10.1039/d4sm01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The dynamical behavior of binary mixtures consisting of highly charged colloidal particles is studied by means of Brownian dynamics simulations. We investigate differently sized, but identically charged particles with nearly identical interactions between all species in highly dilute suspensions. Different short-time self-diffusion coefficients induce, mediated by electrostatic interactions, a coupling of both self and collective dynamics of differently sized particles: the long-time self-diffusion coefficients of a larger species are increased by the presence of a more mobile, smaller species and vice versa. Similar coupling effects are observed in collective dynamics where both time constant and functional form of intermediate scattering functions' initial decay are influenced by the presence of a differently sized species. We provide a systematic analysis of coupling effects in dependence on the ratio of sizes, number densities, and the strength of electrostatic interactions.
Collapse
Affiliation(s)
- Daniel Weidig
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
| | - Joachim Wagner
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany.
| |
Collapse
|
2
|
Pak C, Billings V, Schlitters M, Bergeson SD, Murillo MS. Preliminary study of plasma modes and electron-ion collisions in partially magnetized strongly coupled plasmas. Phys Rev E 2024; 109:015201. [PMID: 38366520 DOI: 10.1103/physreve.109.015201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/07/2023] [Indexed: 02/18/2024]
Abstract
Magnetic fields influence ion transport in plasmas. Straightforward comparisons of experimental measurements with plasma theories are complicated when the plasma is inhomogeneous, far from equilibrium, or characterized by strong gradients. To better understand ion transport in a partially magnetized system, we study the hydrodynamic velocity and temperature evolution in an ultracold neutral plasma at intermediate values of the magnetic field. We observe a transverse, radial breathing mode that does not couple to the longitudinal velocity. The inhomogeneous density distribution gives rise to a shear velocity gradient that appears to be only weakly damped. This mode is excited by ion oscillations originating in the wings of the distribution where the plasma becomes non-neutral. The ion temperature shows evidence of an enhanced electron-ion collision rate in the presence of the magnetic field. Ultracold neutral plasmas provide a rich system for studying mode excitation and decay.
Collapse
Affiliation(s)
- Chanhyun Pak
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Virginia Billings
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Matthew Schlitters
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Scott D Bergeson
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
3
|
Demyanov GS, Levashov PR. One-component plasma of a million particles via angular-averaged Ewald potential: A Monte Carlo study. Phys Rev E 2022; 106:015204. [PMID: 35974543 DOI: 10.1103/physreve.106.015204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In this work we derive a correct expression for the one-component plasma (OCP) energy via the angular-averaged Ewald potential (AAEP). Unlike Yakub and Ronchi [J. Low Temp. Phys. 139, 633 (2005)0022-229110.1007/s10909-005-5451-5], who had tried to obtain the same energy expression from a two-component plasma model, we used the original Ewald potential for an OCP. A constant in the AAEP was determined using the cluster expansion in the limit of weak coupling. The potential has a simple form suitable for effective numerical simulations. To demonstrate the advantages of the AAEP, we performed a number of Monte Carlo simulations for an OCP with up to a million particles in a wide range of the coupling parameter. Our computations turned out at least two orders of magnitude more effective than those with a traditional Ewald potential. A unified approach is offered for the determination of the thermodynamic limit in the whole investigated range. Our results are in good agreement with both theoretical data for a weakly coupled OCP and previous numerical simulations. We hope that the AAEP will be useful in path integral Monte Carlo simulations of the uniform electron gas.
Collapse
Affiliation(s)
- G S Demyanov
- Joint Institute for High Temperatures, Izhorskaya 13 Bldg 2, Moscow 125412, Russia and Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141701, Russia
| | - P R Levashov
- Joint Institute for High Temperatures, Izhorskaya 13 Bldg 2, Moscow 125412, Russia and Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
4
|
Sprenkle RT, Bergeson SD, Silvestri LG, Murillo MS. Ultracold neutral plasma expansion in a strong uniform magnetic field. Phys Rev E 2022; 105:045201. [PMID: 35590663 DOI: 10.1103/physreve.105.045201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
In strongly magnetized neutral plasmas, electron motion is reduced perpendicular to the magnetic field direction. This changes dynamical plasma properties such as temperature equilibration, spatial density evolution, electron pressure, and thermal and electrical conductivity. In this paper we report measurements of free plasma expansion in the presence of a strong magnetic field. We image laser-induced fluorescence from an ultracold neutral Ca^{+} plasma to map the plasma size as a function of time for a range of magnetic field strengths. The asymptotic expansion velocity perpendicular to the magnetic field direction falls rapidly with increasing magnetic field strength. We observe that the initially Gaussian spatial distribution remains Gaussian throughout the expansion in both the parallel and perpendicular directions. We compare these observations with a diffusion model and with a self-similar expansion model and show that neither of these models reproduces the observed behavior over the entire range of magnetic fields used in this study. Modeling the expansion of a magnetized ultracold plasma poses a nontrivial theoretical challenge.
Collapse
Affiliation(s)
- R Tucker Sprenkle
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - S D Bergeson
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Luciano G Silvestri
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
5
|
Castello FL, Tolias P. Structure and thermodynamics of two-dimensional Yukawa liquids. Phys Rev E 2021; 103:063205. [PMID: 34271703 DOI: 10.1103/physreve.103.063205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic and structural properties of two-dimensional dense Yukawa liquids are studied with molecular dynamics simulations. The "exact" thermodynamic properties are simultaneously employed in an advanced scheme for the determination of an equation of state that shows an unprecedented level of accuracy for the internal energy, pressure, and isothermal compressibility. The "exact" structural properties are utilized to formulate a novel empirical correction to the hypernetted-chain approach that leads to a very high accuracy level in terms of static correlations and thermodynamics.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
6
|
Yang F, Kong W, Liu SF, Wang CZ. Structure of a two-dimensional superparamagnetic system in a quadratic trap. Phys Rev E 2020; 102:043213. [PMID: 33212587 DOI: 10.1103/physreve.102.043213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Ground-state structures of a two-dimensional (2D) system composed of superparamagnetic charged particles are investigated by means of molecular dynamics simulation. The charged particles trapped in a quadratic potential interact with each other via the repulsive, attractive, and magnetic dipole-dipole forces. Simulations are performed within two regimes: a one-component system and a two-component system where the charged particles have the identical charge-to-mass ratio. The effects of magnetic dipole-dipole interaction, mixing ratio of the two species and confinement frequency on the ground-state structures are discussed. It is found that as the strength of the magnetic dipole increases, the charged particles tend to self-organize into chainlike structures. The two species particles exhibit different structural features, depending on the competition of electrostatic repulsive interaction, magnetic dipole-dipole interaction and confinement force. The potential lanes are observed through analyzing the global potential of the magnetic particles, which guide the unmagnetic particles aligning themselves in the direction of the potential lanes.
Collapse
Affiliation(s)
- F Yang
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - W Kong
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - S F Liu
- School of Physics, Nankai University, Tianjin 300071, China
| | - C Z Wang
- School of Physics, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Hartmann P, Reyes JC, Kostadinova EG, Matthews LS, Hyde TW, Masheyeva RU, Dzhumagulova KN, Ramazanov TS, Ott T, Kählert H, Bonitz M, Korolov I, Donkó Z. Self-diffusion in two-dimensional quasimagnetized rotating dusty plasmas. Phys Rev E 2019; 99:013203. [PMID: 30780312 DOI: 10.1103/physreve.99.013203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 11/07/2022]
Abstract
The self-diffusion phenomenon in a two-dimensional dusty plasma at extremely strong (effective) magnetic fields is studied experimentally and by means of molecular dynamics simulations. In the experiment the high magnetic field is introduced by rotating the particle cloud and observing the particle trajectories in a corotating frame, which allows reaching effective magnetic fields up to 3000 T. The experimental results confirm the predictions of the simulations: (i) superdiffusive behavior is found at intermediate timescales and (ii) the dependence of the self-diffusion coefficient on the magnetic field is well reproduced.
Collapse
Affiliation(s)
- P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary.,Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - J C Reyes
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - E G Kostadinova
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - L S Matthews
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - T W Hyde
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - R U Masheyeva
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - T Ott
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - H Kählert
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - M Bonitz
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - I Korolov
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
8
|
Feng Y, Lin W, Murillo MS. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field. Phys Rev E 2018; 96:053208. [PMID: 29347770 DOI: 10.1103/physreve.96.053208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 11/07/2022]
Abstract
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Collapse
Affiliation(s)
- Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - Wei Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
Baalrud SD, Daligault J. Transport regimes spanning magnetization-coupling phase space. Phys Rev E 2017; 96:043202. [PMID: 29347622 DOI: 10.1103/physreve.96.043202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The manner in which transport properties vary over the entire parameter-space of coupling and magnetization strength is explored. Four regimes are identified based on the relative size of the gyroradius compared to other fundamental length scales: the collision mean free path, Debye length, distance of closest approach, and interparticle spacing. Molecular dynamics simulations of self-diffusion and temperature anisotropy relaxation spanning the parameter space are found to agree well with the predicted boundaries. Comparison with existing theories reveals regimes where they succeed, where they fail, and where no theory has yet been developed.
Collapse
Affiliation(s)
- Scott D Baalrud
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jérôme Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Ott T, Bonitz M, Hartmann P, Donkó Z. Spontaneous generation of temperature anisotropy in a strongly coupled magnetized plasma. Phys Rev E 2017; 95:013209. [PMID: 28208314 DOI: 10.1103/physreve.95.013209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/06/2023]
Abstract
A magnetic field was recently shown to enhance field-parallel heat conduction in a strongly correlated plasma whereas cross-field conduction is reduced. Here we show that in such plasmas, the magnetic field has the additional effect of inhibiting the isotropization process between field-parallel and cross-field temperature components, thus leading to the emergence of strong and long-lived temperature anisotropies when the plasma is locally perturbed. An extended heat equation is shown to describe this process accurately.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
11
|
Dzhumagulova KN, Masheyeva RU, Ott T, Hartmann P, Ramazanov TS, Bonitz M, Donkó Z. Cage correlation and diffusion in strongly coupled three-dimensional Yukawa systems in magnetic fields. Phys Rev E 2016; 93:063209. [PMID: 27415379 DOI: 10.1103/physreve.93.063209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 06/06/2023]
Abstract
The influence of an external homogeneous magnetic field on the quasilocalization of the particles-characterized quantitatively by cage correlation functions-in strongly coupled three-dimensional Yukawa systems is investigated via molecular dynamics computer simulations over a wide domain of the system parameters (coupling and screening strengths, and magnetic field). The caging time is found to be enhanced by the magnetic field B. The anisotropic migration of the particles in the presence of magnetic field is quantified via computing directional correlation functions, which indicate a more significant increase of localization in the direction perpendicular to B, while a moderate increase is also found along the B field lines. Associating the particles' escapes from the cages with jumps of a characteristic length, a connection is found with the diffusion process: the diffusion coefficients derived from the decay time of the directional correlation functions in both the directions perpendicular to and parallel with B are in very good agreement with respective diffusion coefficients values obtained from their usual computation based on the mean-squared displacement of the particles.
Collapse
Affiliation(s)
- K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - R U Masheyeva
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - T Ott
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - M Bonitz
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| |
Collapse
|
12
|
Ott T, Bonitz M, Donkó Z. Effect of correlations on heat transport in a magnetized strongly coupled plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063105. [PMID: 26764836 DOI: 10.1103/physreve.92.063105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 06/05/2023]
Abstract
In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much less and even enhances the parallel transport. These surprising observations are explained by the competition of kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle molecular dynamics simulations of a one-component plasma.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B 49, Hungary
| |
Collapse
|
13
|
Kogler F, Velev OD, Hall CK, Klapp SHL. Generic model for tunable colloidal aggregation in multidirectional fields. SOFT MATTER 2015; 11:7356-7366. [PMID: 26278680 DOI: 10.1039/c5sm01103e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Based on Brownian Dynamics computer simulations in two dimensions we investigate aggregation scenarios of colloidal particles with directional interactions induced by multiple external fields. To this end we propose a model which allows continuous change in the particle interactions from point-dipole-like to patchy-like (with four patches). We show that, as a result of this change, the non-equilibrium aggregation occurring at low densities and temperatures transforms from conventional diffusion-limited cluster aggregation (DLCA) to slippery DLCA involving rotating bonds; this is accompanied by a pronounced change of the underlying lattice structure of the aggregates from square-like to hexagonal ordering. Increasing the temperature we find a transformation to a fluid phase, consistent with results of a simple mean-field density functional theory.
Collapse
Affiliation(s)
- Florian Kogler
- Institute of Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | | | | | |
Collapse
|
14
|
Feng Y, Goree J, Liu B, Intrator TP, Murillo MS. Superdiffusion of two-dimensional Yukawa liquids due to a perpendicular magnetic field. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:013105. [PMID: 25122399 DOI: 10.1103/physreve.90.013105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Stochastic transport of a two-dimensional (2D) dusty plasma liquid with a perpendicular magnetic field is studied. Superdiffusion is found to occur especially at higher magnetic fields with β of order unity. Here, β = ω(c)/ω(pd) is the ratio of the cyclotron and plasma frequencies for dust particles. The mean-square displacement MSD = 4D(α)t(α) is found to have an exponent α > 1, indicating superdiffusion, with α increasing monotonically to 1.1 as β increases to unity. The 2D Langevin molecular dynamics simulation used here also reveals that another indicator of random particle motion, the velocity autocorrelation function, has a dominant peak frequency ω(peak) that empirically obeys ω(peak)(2) = ω(c)(2) + ω(pd)(2)/4.
Collapse
Affiliation(s)
- Yan Feng
- Los Alamos National Laboratory, Mail Stop E526, Los Alamos, New Mexico 87545, USA
| | - J Goree
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Bin Liu
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
| | - T P Intrator
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M S Murillo
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
15
|
Dzhumagulova KN, Masheeva RU, Ramazanov TS, Donkó Z. Effect of magnetic field on the velocity autocorrelation and the caging of particles in two-dimensional Yukawa liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:033104. [PMID: 24730953 DOI: 10.1103/physreve.89.033104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 06/03/2023]
Abstract
We investigate the effect of an external magnetic field on the velocity autocorrelation function and the "caging" of the particles in a two-dimensional strongly coupled Yukawa liquid, via numerical simulations. The influence of the coupling strength on the position of the dominant peak in the frequency spectrum of the velocity autocorrelation function confirms the onset of a joint effect of the magnetic field and strong correlations at high coupling. Our molecular dynamics simulations quantify the decorrelation of the particles' surroundings: the magnetic field is found to increase significantly the caging time, which reaches values well beyond the time scale of plasma oscillations. The observation of the increased caging time is in accordance with findings that the magnetic field decreases diffusion in similar systems.
Collapse
Affiliation(s)
- K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - R U Masheeva
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós Street 29-33, H-1121 Budapest, Hungary
| |
Collapse
|