1
|
Lin C, Luo KH, Xu A, Gan Y, Lai H. Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects. Phys Rev E 2021; 103:013305. [PMID: 33601619 DOI: 10.1103/physreve.103.013305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A multiple-relaxation-time discrete Boltzmann model (DBM) is proposed for multicomponent mixtures, where compressible, hydrodynamic, and thermodynamic nonequilibrium effects are taken into account. It allows the specific heat ratio and the Prandtl number to be adjustable, and is suitable for both low and high speed fluid flows. From the physical side, besides being consistent with the multicomponent Navier-Stokes equations, Fick's law, and Stefan-Maxwell diffusion equation in the hydrodynamic limit, the DBM provides more kinetic information about the nonequilibrium effects. The physical capability of DBM to describe the nonequilibrium flows, beyond the Navier-Stokes representation, enables the study of the entropy production mechanism in complex flows, especially in multicomponent mixtures. Moreover, the current kinetic model is employed to investigate nonequilibrium behaviors of the compressible Kelvin-Helmholtz instability (KHI). The entropy of mixing, the mixing area, the mixing width, the kinetic and internal energies, and the maximum and minimum temperatures are investigated during the dynamic KHI process. It is found that the mixing degree and fluid flow are similar in the KHI process for cases with various thermal conductivity and initial temperature configurations, while the maximum and minimum temperatures show different trends in cases with or without initial temperature gradients. Physically, both heat conduction and temperature exert slight influences on the formation and evolution of the KHI morphological structure.
Collapse
Affiliation(s)
- Chuandong Lin
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Aiguo Xu
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, China
| | - Yanbiao Gan
- North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Huilin Lai
- College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
2
|
Hydrodynamic and Thermodynamic Nonequilibrium Effects around Shock Waves: Based on a Discrete Boltzmann Method. ENTROPY 2020; 22:e22121397. [PMID: 33321966 PMCID: PMC7763068 DOI: 10.3390/e22121397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
A shock wave that is characterized by sharp physical gradients always draws the medium out of equilibrium. In this work, both hydrodynamic and thermodynamic nonequilibrium effects around the shock wave are investigated using a discrete Boltzmann model. Via Chapman–Enskog analysis, the local equilibrium and nonequilibrium velocity distribution functions in one-, two-, and three-dimensional velocity space are recovered across the shock wave. Besides, the absolute and relative deviation degrees are defined in order to describe the departure of the fluid system from the equilibrium state. The local and global nonequilibrium effects, nonorganized energy, and nonorganized energy flux are also investigated. Moreover, the impacts of the relaxation frequency, Mach number, thermal conductivity, viscosity, and the specific heat ratio on the nonequilibrium behaviours around shock waves are studied. This work is helpful for a deeper understanding of the fine structures of shock wave and nonequilibrium statistical mechanics.
Collapse
|
3
|
Busuioc S, Ambruş VE. Lattice Boltzmann models based on the vielbein formalism for the simulation of flows in curvilinear geometries. Phys Rev E 2019; 99:033304. [PMID: 30999405 DOI: 10.1103/physreve.99.033304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 11/07/2022]
Abstract
In this paper, we consider the Boltzmann equation with respect to orthonormal vielbein fields in conservative form. This formalism allows the use of arbitrary coordinate systems to describe the space geometry, as well as of an adapted coordinate system in the momentum space, which is linked to the physical space through the use of vielbeins. Taking advantage of the conservative form, we derive the macroscopic equations in a covariant tensor notation, and show that the hydrodynamic limit can be obtained via the Chapman-Enskog expansion in the Bhatnaghar-Gross-Krook approximation for the collision term. We highlight that in this formalism, the component of the momentum which is perpendicular to some curved boundary can be isolated as a separate momentum coordinate, for which the half-range Gauss-Hermite quadrature can be applied. We illustrate the capabilities of this formalism by considering two applications. The first one is the circular Couette flow between rotating coaxial cylinders, for which benchmarking data are available for all degrees of rarefaction, from the hydrodynamic to the ballistic regime. The second application concerns the flow in a gradually expanding channel. We employ finite-difference lattice Boltzmann models based on half-range Gauss-Hermite quadratures for the implementation of diffuse reflection, together with the fifth-order weighted essentially nonoscillatory and third-order total variation diminishing Runge-Kutta numerical methods for the advection and time stepping, respectively.
Collapse
Affiliation(s)
- Sergiu Busuioc
- Department of Physics, West University of Timişoara, Vasile Pârvan Avenue 4, 300223 Timişoara, Romania
| | - Victor E Ambruş
- Department of Physics, West University of Timişoara, Vasile Pârvan Avenue 4, 300223 Timişoara, Romania
| |
Collapse
|
4
|
Gan Y, Xu A, Zhang G, Zhang Y, Succi S. Discrete Boltzmann trans-scale modeling of high-speed compressible flows. Phys Rev E 2018; 97:053312. [PMID: 29906918 DOI: 10.1103/physreve.97.053312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 06/08/2023]
Abstract
We present a general framework for constructing trans-scale discrete Boltzmann models (DBMs) for high-speed compressible flows ranging from continuum to transition regime. This is achieved by designing a higher-order discrete equilibrium distribution function that satisfies additional nonhydrodynamic kinetic moments. To characterize the thermodynamic nonequilibrium (TNE) effects and estimate the condition under which the DBMs at various levels should be used, two measures are presented: (i) the relative TNE strength, describing the relative strength of the (N+1)th order TNE effects to the Nth order one; (ii) the TNE discrepancy between DBM simulation and relevant theoretical analysis. Whether or not the higher-order TNE effects should be taken into account in the modeling and which level of DBM should be adopted is best described by the relative TNE intensity and/or the discrepancy rather than by the value of the Knudsen number. As a model example, a two-dimensional DBM with 26 discrete velocities at Burnett level is formulated, verified, and validated.
Collapse
Affiliation(s)
- Yanbiao Gan
- North China Institute of Aerospace Engineering, Langfang 065000, China
- College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou 350007, China
| | - Aiguo Xu
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088, China
- Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, China
| | - Guangcai Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088, China
| | - Yudong Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088, China
- Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sauro Succi
- Center for Life Nano Science at La Sapienza, Fondazione Istituto Italiano di Tecnologia, Viale Regina Margherita 295, 00161 Roma, Italy
- Physics Department and Institute for Applied Computational Science, John A. Paulson School of Applied Science and Engineering, Harvard University, Oxford Street 29, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
5
|
Lin C, Xu A, Zhang G, Luo KH, Li Y. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows. Phys Rev E 2017; 96:053305. [PMID: 29347713 DOI: 10.1103/physreve.96.053305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Indexed: 11/06/2022]
Abstract
A discrete Boltzmann model (DBM) is proposed to probe the Rayleigh-Taylor instability (RTI) in two-component compressible flows. Each species has a flexible specific-heat ratio and is described by one discrete Boltzmann equation (DBE). Independent discrete velocities are adopted for the two DBEs. The collision and force terms in the DBE account for the molecular collision and external force, respectively. Two types of force terms are exploited. In addition to recovering the modified Navier-Stokes equations in the hydrodynamic limit, the DBM has the capability of capturing detailed nonequilibrium effects. Furthermore, we use the DBM to investigate the dynamic process of the RTI. The invariants of tensors for nonequilibrium effects are presented and studied. For low Reynolds numbers, both global nonequilibrium manifestations and the growth rate of the entropy of mixing show three stages (i.e., the reducing, increasing, and then decreasing trends) in the evolution of the RTI. On the other hand, the early reducing tendency is suppressed and even eliminated for high Reynolds numbers. Relevant physical mechanisms are analyzed and discussed.
Collapse
Affiliation(s)
- Chuandong Lin
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China.,State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China.,College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou 350007, China
| | - Aiguo Xu
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China.,Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, China
| | - Guangcai Zhang
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
| | - Kai Hong Luo
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China.,Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Yingjun Li
- State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
6
|
Fei L, Luo KH. Consistent forcing scheme in the cascaded lattice Boltzmann method. Phys Rev E 2017; 96:053307. [PMID: 29347753 DOI: 10.1103/physreve.96.053307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies the relation between MRT LBM and CLBM under a general framework.
Collapse
Affiliation(s)
- Linlin Fei
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Hong Luo
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
7
|
Liu H, Zhang Y, Kang W, Zhang P, Duan H, He XT. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons. Phys Rev E 2017; 95:023201. [PMID: 28297841 DOI: 10.1103/physreve.95.023201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 06/06/2023]
Abstract
We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.185003], which explicitly takes the excitation of electrons into consideration. Nonequilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D_{2} molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on large scales, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor that accounts for the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel materials commonly used in the inertial confinement fusion.
Collapse
Affiliation(s)
- Hao Liu
- HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China
| | - Yin Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Wei Kang
- HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Zhang
- HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Huiling Duan
- HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - X T He
- HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
8
|
Lai H, Xu A, Zhang G, Gan Y, Ying Y, Succi S. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows. Phys Rev E 2016; 94:023106. [PMID: 27627391 DOI: 10.1103/physreve.94.023106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 06/06/2023]
Abstract
The effects of compressibility on Rayleigh-Taylor instability (RTI) are investigated by inspecting the interplay between thermodynamic and hydrodynamic nonequilibrium phenomena (TNE, HNE, respectively) via a discrete Boltzmann model. Two effective approaches are presented, one tracking the evolution of the local TNE effects and the other focusing on the evolution of the mean temperature of the fluid, to track the complex interfaces separating the bubble and the spike regions of the flow. It is found that both the compressibility effects and the global TNE intensity show opposite trends in the initial and the later stages of the RTI. Compressibility delays the initial stage of RTI and accelerates the later stage. Meanwhile, the TNE characteristics are generally enhanced by the compressibility, especially in the later stage. The global or mean thermodynamic nonequilibrium indicators provide physical criteria to discriminate between the two stages of the RTI.
Collapse
Affiliation(s)
- Huilin Lai
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
- School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China
| | - Aiguo Xu
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
- Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, China
| | - Guangcai Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
| | - Yanbiao Gan
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
- North China Institute of Aerospace Engineering, Langfang 065000, China
| | - Yangjun Ying
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
| | - Sauro Succi
- Istituto Applicazioni Calcolo, CNR, Viale del Policlinico 137, 00161 Roma, Italy
| |
Collapse
|
9
|
Gan Y, Xu A, Zhang G, Succi S. Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects. SOFT MATTER 2015; 11:5336-5345. [PMID: 26060044 DOI: 10.1039/c5sm01125f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A discrete Boltzmann model (DBM) is developed to investigate the hydrodynamic and thermodynamic non-equilibrium (TNE) effects in phase separation processes. The interparticle force drives changes and the gradient force, induced by gradients of macroscopic quantities, opposes them. In this paper, we investigate the interplay between them by providing a detailed inspection of various non-equilibrium observables. Based on the TNE features, we define TNE strength which roughly estimates the deviation amplitude from the thermodynamic equilibrium. The time evolution of the TNE intensity provides a convenient and efficient physical criterion to discriminate the stages of the spinodal decomposition and domain growth. Via the DBM simulation and this criterion, we quantitatively study the effects of latent heat and surface tension on phase separation. It is found that the TNE strength attains its maximum at the end of the spinodal decomposition stage, and it decreases when the latent heat increases from zero. The surface tension effects are threefold, prolong the duration of the spinodal decomposition stage, decrease the maximum TNE intensity, and accelerate the speed of the domain growth stage.
Collapse
Affiliation(s)
- Yanbiao Gan
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing, P. R. China.
| | | | | | | |
Collapse
|
10
|
Xu A, Lin C, Zhang G, Li Y. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:043306. [PMID: 25974611 DOI: 10.1103/physreve.91.043306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Indexed: 06/04/2023]
Abstract
To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.
Collapse
Affiliation(s)
- Aiguo Xu
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, People's Republic of China
- Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, People's Republic of China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chuandong Lin
- State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Guangcai Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, People's Republic of China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yingjun Li
- State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| |
Collapse
|