Baule A. Shape Universality Classes in the Random Sequential Adsorption of Nonspherical Particles.
PHYSICAL REVIEW LETTERS 2017;
119:028003. [PMID:
28753325 DOI:
10.1103/physrevlett.119.028003]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 06/07/2023]
Abstract
Random sequential adsorption (RSA) of particles of a particular shape is used in a large variety of contexts to model particle aggregation and jamming. A key feature of these models is the observed algebraic time dependence of the asymptotic jamming coverage ∼t^{-ν} as t→∞. However, the exact value of the exponent ν is not known apart from the simplest case of the RSA of monodisperse spheres adsorbed on a line (Renyi's seminal "car parking problem"), where ν=1 can be derived analytically. Empirical simulation studies have conjectured on a case-by-case basis that for general nonspherical particles, ν=1/(d+d[over ˜]), where d denotes the dimension of the domain, and d[over ˜] the number of orientational degrees of freedom of a particle. Here, we solve this long-standing problem analytically for the d=1 case-the "Paris car parking problem." We prove, in particular, that the scaling exponent depends on the particle shape, contrary to the original conjecture and, remarkably, falls into two universality classes: (i) ν=1/(1+d[over ˜]/2) for shapes with a smooth contact distance, e.g., ellipsoids, and (ii) ν=1/(1+d[over ˜]) for shapes with a singular contact distance, e.g., spherocylinders and polyhedra. The exact solution explains, in particular, why many empirically observed scalings fall in between these two limits.
Collapse