1
|
Ghannad Z. Fickian yet non-Gaussian diffusion in two-dimensional Yukawa liquids. Phys Rev E 2019; 100:033211. [PMID: 31639989 DOI: 10.1103/physreve.100.033211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/07/2022]
Abstract
We investigate Fickian diffusion in two-dimensional (2D) Yukawa liquids using molecular dynamics simulations. We compute the self-van Hove correlation function G_{s}(r,t) and the self-intermediate scattering function F_{s}(k,t), and we compare these functions with those obtained from mean-squared displacement (MSD) using the Gaussian approximation. According to this approximation, a linear MSD with time implies a Gaussian behavior for G_{s}(r,t) and F_{s}(k,t) at all times. Surprisingly, we find that these functions deviate from Gaussian at intermediate timescales, indicating the failure of the Gaussian approximation. Furthermore, we quantify these deviations by the non-Gaussian parameter, and we find that the deviations increase when the temperature of the liquid decreases. The origin of the non-Gaussian behavior may be the heterogeneous dynamics of dust particles observed in 2D Yukawa liquids.
Collapse
Affiliation(s)
- Zahra Ghannad
- Department of Physics, Alzahra University, P.O. Box 19938-93973, Tehran, Iran
| |
Collapse
|
2
|
Lee MJ, Jung YD. Influence of collective nonideal shielding on fusion reaction in partially ionized classical nonideal plasmas. Phys Rev E 2017; 95:043211. [PMID: 28505747 DOI: 10.1103/physreve.95.043211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 11/07/2022]
Abstract
The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.
Collapse
Affiliation(s)
- Myoung-Jae Lee
- Department of Physics, Hanyang University, Seoul 04763, South Korea and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Young-Dae Jung
- Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA
| |
Collapse
|
3
|
Ott T, Bonitz M, Hartmann P, Donkó Z. Spontaneous generation of temperature anisotropy in a strongly coupled magnetized plasma. Phys Rev E 2017; 95:013209. [PMID: 28208314 DOI: 10.1103/physreve.95.013209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/06/2023]
Abstract
A magnetic field was recently shown to enhance field-parallel heat conduction in a strongly correlated plasma whereas cross-field conduction is reduced. Here we show that in such plasmas, the magnetic field has the additional effect of inhibiting the isotropization process between field-parallel and cross-field temperature components, thus leading to the emergence of strong and long-lived temperature anisotropies when the plasma is locally perturbed. An extended heat equation is shown to describe this process accurately.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
4
|
Dzhumagulova KN, Masheyeva RU, Ott T, Hartmann P, Ramazanov TS, Bonitz M, Donkó Z. Cage correlation and diffusion in strongly coupled three-dimensional Yukawa systems in magnetic fields. Phys Rev E 2016; 93:063209. [PMID: 27415379 DOI: 10.1103/physreve.93.063209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 06/06/2023]
Abstract
The influence of an external homogeneous magnetic field on the quasilocalization of the particles-characterized quantitatively by cage correlation functions-in strongly coupled three-dimensional Yukawa systems is investigated via molecular dynamics computer simulations over a wide domain of the system parameters (coupling and screening strengths, and magnetic field). The caging time is found to be enhanced by the magnetic field B. The anisotropic migration of the particles in the presence of magnetic field is quantified via computing directional correlation functions, which indicate a more significant increase of localization in the direction perpendicular to B, while a moderate increase is also found along the B field lines. Associating the particles' escapes from the cages with jumps of a characteristic length, a connection is found with the diffusion process: the diffusion coefficients derived from the decay time of the directional correlation functions in both the directions perpendicular to and parallel with B are in very good agreement with respective diffusion coefficients values obtained from their usual computation based on the mean-squared displacement of the particles.
Collapse
Affiliation(s)
- K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - R U Masheyeva
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - T Ott
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - M Bonitz
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| |
Collapse
|
5
|
Ott T, Bonitz M, Donkó Z. Effect of correlations on heat transport in a magnetized strongly coupled plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063105. [PMID: 26764836 DOI: 10.1103/physreve.92.063105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 06/05/2023]
Abstract
In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much less and even enhances the parallel transport. These surprising observations are explained by the competition of kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle molecular dynamics simulations of a one-component plasma.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B 49, Hungary
| |
Collapse
|
6
|
Lee MJ, Jung YD. Dual-frequency modes of the dust acoustic surface wave in a semibounded system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:013105. [PMID: 26274292 DOI: 10.1103/physreve.92.013105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Dual-frequency modes of the dust acoustic surface waves propagating at the interface between a nonmagnetized multicomponent Lorentzian dusty plasma and a vacuum are investigated, including nonthermal and positron effects. The dispersion relation is kinetically derived by employing the specular reflection boundary condition and the dielectric permittivity for dusty plasma containing positrons. We found that there exist two modes of the dust acoustic surface wave; high- and low-frequency modes. We observe that both H and L modes are enhanced by the increase of the pair annihilation rate. However, the effects of positron density are twofold depending on the ratio of annihilated positrons. The effects of nonthermal plasmas are also investigated on the H and L modes of dust acoustic surface waves. We found that the nonthermal plasmas reduce the frequencies of both H and L modes.
Collapse
Affiliation(s)
- Myoung-Jae Lee
- Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Young-Dae Jung
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA and Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea
| |
Collapse
|