1
|
Nagao M, Seto H. Neutron scattering studies on dynamics of lipid membranes. BIOPHYSICS REVIEWS 2023; 4:021306. [PMID: 38504928 PMCID: PMC10903442 DOI: 10.1063/5.0144544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 03/21/2024]
Abstract
Neutron scattering methods are powerful tools for the study of the structure and dynamics of lipid bilayers in length scales from sub Å to tens to hundreds nm and the time scales from sub ps to μs. These techniques also are nondestructive and, perhaps most importantly, require no additives to label samples. Because the neutron scattering intensities are very different for hydrogen- and deuterium-containing molecules, one can replace the hydrogen atoms in a molecule with deuterium to prepare on demand neutron scattering contrast without significantly altering the physical properties of the samples. Moreover, recent advances in neutron scattering techniques, membrane dynamics theories, analysis tools, and sample preparation technologies allow researchers to study various aspects of lipid bilayer dynamics. In this review, we focus on the dynamics of individual lipids and collective membrane dynamics as well as the dynamics of hydration water.
Collapse
Affiliation(s)
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
2
|
Lee SH, Tseng WC, Du ZY, Lin WY, Chen MH, Lin CC, Lien GW, Liang HJ, Wen HJ, Guo YL, Chen PC, Lin CY. Lipid responses to environmental perfluoroalkyl substance exposure in a Taiwanese Child cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117007. [PMID: 33845286 DOI: 10.1016/j.envpol.2021.117007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Although recent epidemiologic studies have focused on some of the health effects of perfluoroalkyl substance (PFASs) exposure in humans, the associations between PFASs exposure and the lipidome in children are still unclear. The purpose of this study was to assess lipid changes in children to understand possible molecular events of environmental PFASs exposure and suggest potential health effects. A total of 290 Taiwanese children (8-10 years old) were included in this study. Thirteen PFASs were analyzed in their serum by high-performance liquid chromatography-tandem mass spectrometry (LC-MS). MS-based lipidomic approaches were applied to examine lipid patterns in the serum of children exposed to different levels of PFASs. LC coupling with triple quadrupole MS technology was conducted to analyze phosphorylcholine-containing lipids. Multivariate analyses, such as partial least squares analysis along with univariate analyses, including multiple linear regression, were used to analyze associations between s exposure and unique lipid patterns. Our results showed that different lipid patterns were discovered in children exposed to different levels of specific PFASs, such as PFTrDA, PFOS, and PFDA. These changes in lipid levels may be involved in hepatic lipid metabolism, metabolic disorders, and PFASs-membrane interactions. This study showed that lipidomics is a powerful approach to identify critical PFASs that cause metabolite perturbation in the serum of children and suggest possible adverse health effects of these chemicals in children.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Tseng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yi Du
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Guang-Wen Lien
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Office of Occupational Safety and Health, National Taiwan University Hospital, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Shen Z, Ge J, Ye H, Tang S, Li Y. Cholesterol-like Condensing Effect of Perfluoroalkyl Substances on a Phospholipid Bilayer. J Phys Chem B 2020; 124:5415-5425. [PMID: 32515593 DOI: 10.1021/acs.jpcb.0c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To understand the potential cytotoxicity of perfluoroalkyl substances (PFAS), we study their interactions with a model phospholipid bilayer membrane using molecular dynamics (MD) simulations. Four typical PFAS molecules are investigated, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctanesulfonic acid (PFOS), and perfluorohexane sulfonate (PFHxS). All of these PFAS molecules are found to spontaneously penetrate the lipid bilayer within a short simulation time (a few nanoseconds). During the penetration process, further free-energy analysis reveals that a PFAS molecule encounters an energy barrier at the bilayer/water interface. To overcome this free-energy barrier, the PFAS molecule flips itself at the interface. We further investigate the influence of embedded PFAS molecules on the membrane properties. All of the embedded PFAS molecules are found to produce a cholesterol-like condensing effect on the lipid bilayer, which includes increases of the order parameters of lipid tails and the thickness of the lipid bilayer and a decrease of area per lipid. Moreover, the PFAS molecules are found to form hydrogen bonds with oxygen atoms at three different positions of a lipid molecule. Our work reveals the penetration pathway of PFAS molecules entering into a lipid bilayer. In addition, the cholesterol-like condensing effect induced by embedded PFAS molecules on model membranes is systematically investigated and discussed. Our simulations can help understand the physical mechanisms of PFAS cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey Ge
- Department of Materials Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shan Tang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Peropadre A, Hazen MJ, Pérez Martín JM, Fernández Freire P. An acute exposure to perfluorooctanoic acid causes non-reversible plasma membrane injury in HeLa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114008. [PMID: 31995777 DOI: 10.1016/j.envpol.2020.114008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Health and environmental risks regarding perfluorooctanoic acid, a well-known perfluorinated compound, are still a subject of great concern. Ubiquitous exposure and disparity of results make it difficult to determine the underlying mechanism of action, especially at the cellular level. This study proposes an experimental design to assess the reversibility of adverse effects after a one-time exposure to the compound, in comparison with other more conventional timings. Complementary endpoints including total protein content, neutral red uptake and MTT reduction tests along with division rates and microscopic observations were evaluated in HeLa cells. In addition, PFOA quantification inside the cells was performed. The cellular effects exerted after 24 h exposure to perfluorooctanoic acid are non-reversible after a 48 h recovery period. In addition, we describe for the first time the induction of plasma membrane blebbing and the activation of membrane repair mechanisms after recovery from non-cytotoxic treatments with the compound. This experimental design has provided relevant information regarding the toxicity of this perfluorinated compound, relating all the adverse effects detected to its interaction with the plasma membrane.
Collapse
Affiliation(s)
- Ana Peropadre
- Department of Biology (Lab A-110), Faculty of Sciences, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
| | - Maria José Hazen
- Department of Biology (Lab A-110), Faculty of Sciences, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
| | - José Manuel Pérez Martín
- Department of Biology (Lab A-110), Faculty of Sciences, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
| | - Paloma Fernández Freire
- Department of Biology (Lab A-110), Faculty of Sciences, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Wang H, Zhang X, Liu Y, Liu J. Stabilization of Liposomes by Perfluorinated Compounds. ACS OMEGA 2018; 3:15353-15360. [PMID: 30556004 PMCID: PMC6288781 DOI: 10.1021/acsomega.8b02448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/30/2018] [Indexed: 05/05/2023]
Abstract
Perfluorinated compounds (PFCs) are emerging persistent environmental contaminants that may be toxic to animals and humans. To gain fundamental insights into the mechanism of their toxicity, the interactions of phosphocholine (PC) liposomes as model membranes were studied with three types of PFCs, including perfluorooctanoic acid, perfluorooctane sulfonate, and perfluorohexanesulfonic acid potassium salt, together with three common surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and sodium 1-heptanesulfonate (SHS). The interactions were systematically characterized by zeta potential measurement, dynamic light scattering, negative-stain transmission electron microscopy, and fluorescence spectroscopy. Unmodified liposomes, calcein-loaded liposomes, and Laurdan dye-embedded liposomes were all tested. By gradually increasing the temperature, the three PFCs and SHS decreased the leakage of calcein-loaded 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposomes, whereas SDS and CTAB increased the leakage. The PFCs that affected the lipid membranes stronger than SHS were attributable to their perfluoroalkyl carbon chains. Packing of the lipids was further studied using Laurdan dye as a probe. Calcein leakage tests also indicated that PFCs inhibited lipid membrane leakage induced by inorganic nanoparticles such as silica and gold nanoparticles. This study confirmed the similar effect of the PFCs as cholesterol in affecting membrane properties and would be helpful for understanding the interaction mechanism of PFCs and cell membranes.
Collapse
Affiliation(s)
- Heye Wang
- Jiangsu
Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation
Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaohan Zhang
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yibo Liu
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- E-mail: (J.L.)
| |
Collapse
|
6
|
Cholesterol-like effects of a fluorotelomer alcohol incorporated in phospholipid membranes. Sci Rep 2018; 8:2154. [PMID: 29391464 PMCID: PMC5794869 DOI: 10.1038/s41598-018-20511-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/19/2018] [Indexed: 11/27/2022] Open
Abstract
Fluorocarbon amphiphiles are anthropogenic substances widely used in diverse applications such as food packaging, clothing or cookware. Due to their widespread use and non-biodegradability, these chemicals are now ubiquitous in the natural world with high propensity to bioaccumulate in biological membranes, wherein they may affect microscopic properties. Here, we test the hypothesis that a typical fluorocarbon amphiphile can affect lipid membranes similarly to cholesterol by investigating the effect of 1H,1H,2H,2H-perfluoro-1-decanol (8:2 FTOH) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes. Using solid-state nuclear magnetic resonance spectroscopy, differential scanning calorimetry and confocal microscopy, we present a consistent set of independent experimental evidences supporting this hypothesis, namely that upon incorporation of 8:2 FTOH, (i) a condensing effect on the acyl chains occurs in the fluid phase, (ii) coexistence of two membrane phases is observed below melting, and (iii) the melting temperature of DPPC varies no more than approximately ±1 °C up to a concentration of 40 mol% of 8:2 FTOH. The condensing effect is quantified by means of advanced dipolar recoupling solid-state NMR experiments and is found to be of approximately half the magnitude of the cholesterol effect at the same concentration.
Collapse
|
7
|
Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering. Chem Phys Lipids 2017; 206:28-42. [DOI: 10.1016/j.chemphyslip.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
|
8
|
Brüning BA, Prévost S, Stehle R, Steitz R, Falus P, Farago B, Hellweg T. Bilayer undulation dynamics in unilamellar phospholipid vesicles: effect of temperature, cholesterol and trehalose. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2412-9. [PMID: 24950248 DOI: 10.1016/j.bbamem.2014.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
We report a combined dynamic light scattering (DLS) and neutron spin-echo (NSE) study on the local bilayer undulation dynamics of phospholipid vesicles composed of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC) under the influence of temperature and the additives cholesterol and trehalose. The additives affect vesicle size and self-diffusion. Mechanical properties of the membrane and corresponding bilayer undulations are tuned by changing lipid headgroup or acyl chain properties through temperature or composition. On the local length scale, changes at the lipid headgroup influence the bilayer bending rigidity κ less than changes at the lipid acyl chain: We observe a bilayer softening around the main phase transition temperature Tm of the single lipid system, and stiffening when more cholesterol is added, in concordance with literature. Surprisingly, no effect on the mechanical properties of the vesicles is observed upon the addition of trehalose.
Collapse
Affiliation(s)
- Beate-Annette Brüning
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin, Germany; Radiation Science and Technology, Delft University of Technology, Mekelweg 15, JB 2629 Delft, The Netherlands.
| | - Sylvain Prévost
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Ralf Stehle
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Roland Steitz
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Peter Falus
- Time-of-Flight and High Resolution, Institut Laue Langevin, B. P. 156, 38042 Grenoble, Cedex 9, France
| | - Bela Farago
- Time-of-Flight and High Resolution, Institut Laue Langevin, B. P. 156, 38042 Grenoble, Cedex 9, France
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|