1
|
Karde V, Ghoroi C. Humidity induced interparticle friction and its mitigation in fine powder flow. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.1977746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vikram Karde
- Department of Chemical Engineering, DryProTech Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Chinmay Ghoroi
- Department of Chemical Engineering, DryProTech Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Pugnaloni LA, Carlevaro CM, Kozlowski R, Zheng H, Kondic L, Socolar JES. Universal features of the stick-slip dynamics of an intruder moving through a confined granular medium. Phys Rev E 2022; 105:L042902. [PMID: 35590619 DOI: 10.1103/physreve.105.l042902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Experiments and simulations of an intruder dragged by a spring through a two-dimensional annulus of granular material exhibit robust force fluctuations. At low packing fractions (ϕ<ϕ_{0}), the intruder clears an open channel. Above ϕ_{0}, stick-slip dynamics develop, with an average energy release that is independent of the particle-particle and particle-base friction coefficients but does depend on the width W of the annulus and the diameter D of the intruder. A simple model predicts the dependence of ϕ_{0} on W and D, allowing for a data collapse for the average energy release as a function of ϕ/ϕ_{0}. These results pose challenges for theories of mechanical failure in amorphous materials.
Collapse
Affiliation(s)
- Luis A Pugnaloni
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina and Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, Avenida 60 Esquina 124, 1900 La Plata, Argentina
| | - Ryan Kozlowski
- Physics Department, Berea College, Berea, Kentucky 40404, USA
| | - Hu Zheng
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Lou Kondic
- Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
3
|
Carvalho DD, Lima NC, Franklin EM. Contacts, motion, and chain breaking in a two-dimensional granular system displaced by an intruder. Phys Rev E 2022; 105:034903. [PMID: 35428166 DOI: 10.1103/physreve.105.034903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
We investigate numerically how the motion of an intruder within a two-dimensional granular system affects its structure and produces drag on the intruder. We made use of discrete numerical simulations in which a larger disk (intruder) is driven at constant speed amid smaller disks confined in a rectangular cell. By varying the intruder's velocity and the basal friction, we obtained the resultant force on the intruder and the instantaneous network of contact forces, which we analyze at both the cell and grain scales. We found that there is a bearing network that percolates forces from the intruder toward the walls, being responsible for jammed regions and high values of the drag force, and a dissipative network that percolates small forces within the grains, in agreement with previous experiments on compressed granular systems. In addition, we found the anisotropy levels of the contact network for different force magnitudes and regions, that the force network can reach regions far downstream of the intruder by the end of the intruder's motion, that the extent of the force network decreases with decreasing the basal friction, and that the void region (cavity) that appears downstream of the intruder tends to disappear for lower values of the basal friction. Interestingly, our results show that grains within the bearing chains creep while the chains break, revealing the mechanism by which bearing chains collapse.
Collapse
Affiliation(s)
- Douglas D Carvalho
- School of Mechanical Engineering, University of Campinas, Rua Mendeleyev 200, Campinas, São Paulo, Brazil
| | - Nicolao C Lima
- School of Mechanical Engineering, University of Campinas, Rua Mendeleyev 200, Campinas, São Paulo, Brazil
| | - Erick M Franklin
- School of Mechanical Engineering, University of Campinas, Rua Mendeleyev 200, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Kozlowski R, Zheng H, Daniels KE, Socolar JES. Stress propagation in locally loaded packings of disks and pentagons. SOFT MATTER 2021; 17:10120-10127. [PMID: 34726678 DOI: 10.1039/d1sm01137e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanical strength and flow of granular materials can depend strongly on the shapes of individual grains. We report quantitative results obtained from photoelasticimetry experiments on locally loaded, quasi-two-dimensional granular packings of either disks or pentagons exhibiting stick-slip dynamics. Packings of pentagons resist the intruder at significantly lower packing fractions than packings of disks, transmitting stresses from the intruder to the boundaries over a smaller spatial extent. Moreover, packings of pentagons feature significantly fewer back-bending force chains than packings of disks. Data obtained on the forward spatial extent of stresses and back-bending force chains collapse when the packing fraction is rescaled according to the packing fraction of steady state open channel formation, though data on intruder forces and dynamics do not collapse. We comment on the influence of system size on these findings and highlight connections with the dynamics of the disks and pentagons during slip events.
Collapse
Affiliation(s)
- Ryan Kozlowski
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.
| | - Hu Zheng
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
5
|
Kozlowski R, Zheng H, Daniels KE, Socolar JES. Particle dynamics in two-dimensional point-loaded granular media composed of circular or pentagonal grains. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124906010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Granular packings exhibit significant changes in rheological and structural properties when the rotational symmetry of spherical or circular particles is broken. Here, we report on experiments exploring the differences in dynamics of a grain-scale intruder driven through a packing of either disks or pentagons, where the presence of edges and vertices on grains introduces the possibility of rotational constraints at edge-edge contacts. We observe that the intruder’s stick-slip dynamics are comparable between the disk packing near the frictional jamming fraction and the pentagonal packing at significantly lower packing fractions. We connect this stark contrast in packing fraction with the average speed and rotation fields of grains during slip events, finding that rotation of pentagons is limited and the flow of pentagonal grains is largely confined in front of the intruder, whereas disks rotate more on average and circulate around the intruder to fill the open channel behind it. Our results indicate that grain-scale rotation constraints significantly modify collective motion of grains on mesoscopic scales and correspondingly enhance resistance to penetration of a local intruder.
Collapse
|
6
|
Carlevaro CM, Kozlowski R, Pugnaloni LA, Zheng H, Socolar JES, Kondic L. Intruder in a two-dimensional granular system: Effects of dynamic and static basal friction on stick-slip and clogging dynamics. Phys Rev E 2020; 101:012909. [PMID: 32069686 DOI: 10.1103/physreve.101.012909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 11/07/2022]
Abstract
We present simulation results for an intruder pulled through a two-dimensional granular system by a spring using a model designed to mimic the experiments described by Kozlowski et al. [Phys. Rev. E 100, 032905 (2019)2470-004510.1103/PhysRevE.100.032905]. In that previous study the presence of basal friction between the grains and the base was observed to change the intruder dynamics from clogging to stick-slip. Here we first show that our simulation results are in excellent agreement with the experimental data for a variety of experimentally accessible friction coefficients governing interactions of particles with each other and with boundaries. We then use simulations to explore a broader range of parameter space, focusing on the friction between the particles and the base. We consider both static and dynamic basal friction coefficients, which are difficult to vary smoothly in experiments. The simulations show that dynamic friction strongly affects the stick-slip behavior when the coefficient is decreased below 0.1, while static friction plays only a marginal role.
Collapse
Affiliation(s)
- C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina and Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, La Plata, 1900, Argentina
| | - Ryan Kozlowski
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Luis A Pugnaloni
- Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - Hu Zheng
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.,Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Lou Kondic
- Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
7
|
Kozlowski R, Carlevaro CM, Daniels KE, Kondic L, Pugnaloni LA, Socolar JES, Zheng H, Behringer RP. Dynamics of a grain-scale intruder in a two-dimensional granular medium with and without basal friction. Phys Rev E 2019; 100:032905. [PMID: 31640066 DOI: 10.1103/physreve.100.032905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/07/2022]
Abstract
We report on a series of experiments in which a grain-sized intruder is pushed by a spring through a two-dimensional granular material composed of photoelastic disks in a Couette geometry. We study the intruder dynamics as a function of packing fraction for two types of supporting substrates: A frictional glass plate and a layer of water for which basal friction forces are negligible. We observe two dynamical regimes: Intermittent flow, in which the intruder moves freely most of the time but occasionally gets stuck, and stick-slip dynamics, in which the intruder advances via a sequence of distinct, rapid events. When basal friction is present, we observe a smooth crossover between the two regimes as a function of packing fraction, and we find that reducing the interparticle friction coefficient causes the stick-slip regime to shift to higher packing fractions. When basal friction is eliminated, we observe intermittent flow at all accessible packing fractions. For all cases, we present results for the statistics of stick events, the intruder velocity, and the force exerted on the intruder by the grains. Our results indicate the qualitative importance of basal friction at high packing fractions and suggest a possible connection between intruder dynamics in a static material and clogging dynamics in granular flows.
Collapse
Affiliation(s)
- Ryan Kozlowski
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina and Dpto. Ing. Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, Av. 60 Esq. 124, La Plata, 1900, Argentina
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Lou Kondic
- Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Luis A Pugnaloni
- Dpto. de Física, Fac. Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Hu Zheng
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.,Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Robert P Behringer
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
8
|
Faug T. Macroscopic force experienced by extended objects in granular flows over a very broad Froude-number range : Macroscopic granular force on extended object. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:120. [PMID: 25957179 DOI: 10.1140/epje/i2015-15034-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/08/2014] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
This paper revisits a great number of data from previous studies about the macroscopic force experienced by either objects moving at constant speed and depth inside static granular materials or motionless objects subject to steady granular flows. It focuses on extended objects whose immersed height is equal or close to the thickness of the surrounding granular medium. A simple scaling argument allows demarcating quasi-static from speed-squared force contributions for all the data from different geometries over a very broad range of Froude number. However, a wide scatter of the data is observed in the quasi-static regime. In the first step, a mean-field model is proposed to describe the average force. Mass and momentum balances are applied to a control volume, namely the expected volume of grains disturbed by the object, which is assumed to extend across the whole width and the entire height of the granular system. This allows defining an equivalent length scale which is computed by fitting the force predicted by the model to the available force data. In the second step, a circular shape is assumed for the effective mobilized domain and the associated diameter can be directly extracted from the computed equivalent length scale. This effective diameter is found to vary linearly with both the object width and the thickness of the granular layer moving around the extended object or the immersed depth of the object. The scaling highlights the key role played by the geometry which may enhance the force in the quasi-static regime.
Collapse
Affiliation(s)
- Thierry Faug
- Irstea, Grenoble, UR ETGR, F-38402, St Martin d'Heres, France,
| |
Collapse
|