1
|
Ouellet M, Kim JZ, Guillaume H, Shaffer SM, Bassett LC, Bassett DS. Breaking reflection symmetry: evolving long dynamical cycles in Boolean systems. NEW JOURNAL OF PHYSICS 2024; 26:023006. [PMID: 38327877 PMCID: PMC10845163 DOI: 10.1088/1367-2630/ad1bdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
In interacting dynamical systems, specific local interaction rules for system components give rise to diverse and complex global dynamics. Long dynamical cycles are a key feature of many natural interacting systems, especially in biology. Examples of dynamical cycles range from circadian rhythms regulating sleep to cell cycles regulating reproductive behavior. Despite the crucial role of cycles in nature, the properties of network structure that give rise to cycles still need to be better understood. Here, we use a Boolean interaction network model to study the relationships between network structure and cyclic dynamics. We identify particular structural motifs that support cycles, and other motifs that suppress them. More generally, we show that the presence of dynamical reflection symmetry in the interaction network enhances cyclic behavior. In simulating an artificial evolutionary process, we find that motifs that break reflection symmetry are discarded. We further show that dynamical reflection symmetries are over-represented in Boolean models of natural biological systems. Altogether, our results demonstrate a link between symmetry and functionality for interacting dynamical systems, and they provide evidence for symmetry's causal role in evolving dynamical functionality.
Collapse
Affiliation(s)
- Mathieu Ouellet
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jason Z Kim
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Harmange Guillaume
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Cell and Molecular Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sydney M Shaffer
- Cell and Molecular Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Biological Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Lee C Bassett
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Dani S Bassett
- Department of Electrical & Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Biological Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Santa Fe Institute, Santa Fe, NM 87501, United States of America
| |
Collapse
|
2
|
Bassler KE, Frey E, Zia RKP. Coevolution of nodes and links: Diversity-driven coexistence in cyclic competition of three species. Phys Rev E 2019; 99:022309. [PMID: 30934283 DOI: 10.1103/physreve.99.022309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 06/09/2023]
Abstract
When three species compete cyclically in a well-mixed, stochastic system of N individuals, extinction is known to typically occur at times scaling as the system size N. This happens, for example, in rock-paper-scissors games or conserved Lotka-Volterra models in which every pair of individuals can interact on a complete graph. Here we show that if the competing individuals also have a "social temperament" to be either introverted or extroverted, leading them to cut or add links, respectively, then long-living states in which all species coexist can occur. These nonequilibrium quasisteady states only occur when both introverts and extroverts are present, thus showing that diversity can lead to stability in complex systems. In this case, it enables a subtle balance between species competition and network dynamics to be maintained.
Collapse
Affiliation(s)
- Kevin E Bassler
- Department of Physics, University of Houston, Houston, Texas 77204-5005, USA; Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5002, USA; and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, Dresden D-01187, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for Nanoscience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - R K P Zia
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, Dresden D-01187, Germany and Center for Soft Matter and Biological Physics, Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
3
|
Control of complex networks requires both structure and dynamics. Sci Rep 2016; 6:24456. [PMID: 27087469 PMCID: PMC4834509 DOI: 10.1038/srep24456] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.
Collapse
|