1
|
Yuu S, Umekage T. Onset mechanism of granular avalanches in inclining layers using a continuum model. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Abstract
Granular flows are omnipresent in nature and industrial processes, but their rheological properties such as apparent friction and packing fraction are still elusive when inertial, cohesive and viscous interactions occur between particles in addition to frictional and elastic forces. Here we report on extensive particle dynamics simulations of such complex flows for a model granular system composed of perfectly rigid particles. We show that, when the apparent friction and packing fraction are normalized by their cohesion-dependent quasistatic values, they are governed by a single dimensionless number that, by virtue of stress additivity, accounts for all interactions. We also find that this dimensionless parameter, as a generalized inertial number, describes the texture variables such as the bond network connectivity and anisotropy. Encompassing various stress sources, this unified framework considerably simplifies and extends the modeling scope for granular dynamics, with potential applications to powder technology and natural flows. Granular materials are abundant in nature, but we haven’t fully understood their rheological properties as complex interactions between particles are involved. Here, Vo et al. show that granular flows can be described by a generalized dimensionless number based on stress additivity.
Collapse
|
3
|
Ngoma J, Philippe P, Bonelli S, Radjaï F, Delenne JY. Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods. Phys Rev E 2018; 97:052902. [PMID: 29906944 DOI: 10.1103/physreve.97.052902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 11/07/2022]
Abstract
We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.
Collapse
Affiliation(s)
- Jeff Ngoma
- IRSTEA, UR RECOVER, 3275 route de Cézanne, CS 40061, Aix-en-Provence, F-13182, France
| | - Pierre Philippe
- IRSTEA, UR RECOVER, 3275 route de Cézanne, CS 40061, Aix-en-Provence, F-13182, France
| | - Stéphane Bonelli
- IRSTEA, UR RECOVER, 3275 route de Cézanne, CS 40061, Aix-en-Provence, F-13182, France
| | - Farhang Radjaï
- LMGC, CNRS University of Montpellier, 163 rue Auguste Broussonnet, Montpellier, F-34090, France.,Multiscale Material Science for Energy and Environment, CNRS/MIT/AMU Joint Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Jean-Yves Delenne
- IATE, INRA, CIRAD, Montpellier SupAgro, Université de Montpellier, 2 place Pierre Viala, Montpellier, F-34060, France
| |
Collapse
|
5
|
Abstract
By means of extensive coupled molecular dynamics-lattice Boltzmann simulations, accounting for grain dynamics and subparticle resolution of the fluid phase, we analyze steady inertial granular flows sheared by a viscous fluid. We show that, for a broad range of system parameters (shear rate, confining stress, fluid viscosity, and relative fluid-grain density), the frictional strength and packing fraction can be described by a modified inertial number incorporating the fluid effect. In a dual viscous description, the effective viscosity diverges as the inverse square of the difference between the packing fraction and its jamming value, as observed in experiments. We also find that the fabric and force anisotropies extracted from the contact network are well described by the modified inertial number, thus providing clear evidence for the role of these key structural parameters in dense suspensions.
Collapse
|
6
|
Luu LH, Philippe P, Noury G, Perrin J, Brivois O. Erosion of cohesive soil layers above underground conduits. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714009038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Le Guen L, Piton M, Hénaut Q, Huchet F, Richard P. Heat convection and radiation in flighted rotary kilns: A minimal model. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laurédan Le Guen
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| | - Maxime Piton
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| | - Quentin Hénaut
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| | - Florian Huchet
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| | - Patrick Richard
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| |
Collapse
|
8
|
Mutabaruka P, Kumar K, Soga K, Radjai F, Delenne JY. Transient dynamics of a 2D granular pile. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:133. [PMID: 26002530 DOI: 10.1140/epje/i2015-15047-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/09/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
We investigate by means of Contact Dynamics simulations the transient dynamics of a 2D granular pile set into motion by applying shear velocity during a short time interval to all particles. The spreading dynamics is directly controlled by the input energy whereas in recent studies of column collapse the dynamics scales with the initial potential energy of the column. As in column collapse, we observe a power-law dependence of the runout distance with respect to the input energy with nontrivial exponents. This suggests that the power-law behavior is a generic feature of granular dynamics, and the values of the exponents reflect the distribution of kinetic energy inside the material. We observe two regimes with different values of the exponents: the low-energy regime reflects the destabilization of the pile by the impact with a runout time independent of the input energy whereas the high-energy regime is governed by the input energy. We show that the evolution of the pile in the high-energy regime can be described by a characteristic decay time and the available energy after the pile is destabilized.
Collapse
Affiliation(s)
- Patrick Mutabaruka
- LMGC, UMR 5508, University Montpellier 2 - CNRS, F-34095, Montpellier cedex 5, France,
| | | | | | | | | |
Collapse
|