1
|
Kuschel S, Schwab MB, Yeung M, Hollatz D, Seidel A, Ziegler W, Sävert A, Kaluza MC, Zepf M. Controlling the Self-Injection Threshold in Laser Wakefield Accelerators. PHYSICAL REVIEW LETTERS 2018; 121:154801. [PMID: 30362794 DOI: 10.1103/physrevlett.121.154801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Controlling the parameters of a laser plasma accelerated electron beam is a topic of intense research with a particular focus placed on controlling the injection phase of electrons into the accelerating structure from the background plasma. An essential prerequisite for high-quality beams is dark-current free acceleration (i.e., no electrons accelerated beyond those deliberately injected). We show that small-scale density ripples in the background plasma are sufficient to cause the uncontrolled (self-)injection of electrons. Such ripples can be as short as ∼50 μm and can therefore not be resolved by standard interferometry. Background free injection with substantially improved beam characteristics (divergence and pointing) is demonstrated in a gas cell designed for a controlled gas flow. The results are supported by an analytical theory as well as 3D particle in cell simulations.
Collapse
Affiliation(s)
- S Kuschel
- Helmholtz Insitute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantumelectronics, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - M B Schwab
- Helmholtz Insitute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantumelectronics, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - M Yeung
- Helmholtz Insitute Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - D Hollatz
- Institute of Optics and Quantumelectronics, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - A Seidel
- Institute of Optics and Quantumelectronics, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - W Ziegler
- Helmholtz Insitute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantumelectronics, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - A Sävert
- Helmholtz Insitute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantumelectronics, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - M C Kaluza
- Helmholtz Insitute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantumelectronics, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - M Zepf
- Helmholtz Insitute Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institute of Optics and Quantumelectronics, University of Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- School of Mathematics and Physics, Queens University Belfast, BT7 1NN, United Kingdom
| |
Collapse
|
2
|
Unexpected impact of radiation friction: enhancing production of longitudinal plasma waves. Sci Rep 2018; 8:6478. [PMID: 29691459 PMCID: PMC5915534 DOI: 10.1038/s41598-018-24930-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/11/2018] [Indexed: 11/08/2022] Open
Abstract
We study the penetration of ultra-intense (intensity I [Formula: see text] 1023-24 W/cm2) circularly polarized laser pulses into a thick subcritical plasma layer with accounting for radiation friction. We show that radiation pressure is enhanced due to radiation friction in the direction transverse to the laser pulse propagation, and that for stronger and longer laser pulses this mechanism dominates over the ordinary ponderomotive pressure, thus resulting in a substantionaly stronger charge separation than anticipated previously. We give estimates of the effect and compare them with the results of one and two dimensional particle-in-cell simulations. This effect can be important for laser-based acceleration schemes.
Collapse
|
3
|
King B, Hu H. Classical and quantum dynamics of a charged scalar particle in a background of two counterpropagating plane waves. Int J Clin Exp Med 2016. [DOI: 10.1103/physrevd.94.125010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|