1
|
Wiese KJ. Hyperuniformity in the Manna Model, Conserved Directed Percolation and Depinning. PHYSICAL REVIEW LETTERS 2024; 133:067103. [PMID: 39178464 DOI: 10.1103/physrevlett.133.067103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 08/25/2024]
Abstract
Hyperuniformity is an emergent property, whereby the structure factor of the density n scales as S(q)∼q^{α}, with α>0. We show that for the conserved directed percolation (CDP) class, to which the Manna model belongs, there is an exact mapping between the density n in CDP, and the interface position u at depinning, n(x)=n_{0}+∇^{2}u(x), where n_{0} is the conserved particle density. As a consequence, the hyperuniformity exponent equals α=4-d-2ζ, with ζ the roughness exponent at depinning, and d the dimension. In d=1, α=1/2, while 0.6>α≥0 for other d. Our results fit well the simulations in the literature, except in d=1, where we perform our own to confirm this result. Such an exact relation between two seemingly different fields is surprising, and paves new paths to think about hyperuniformity and depinning. As corollaries, we get results of unprecedented precision in all dimensions, exact in d=1. This corrects earlier work on hyperuniformity in CDP.
Collapse
|
2
|
Lee SB, Kim JM. Continuum contact process and influence of impurity on the critical behavior in absorbing-state phase transitions in two dimensions. Phys Rev E 2023; 108:064135. [PMID: 38243520 DOI: 10.1103/physreve.108.064135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
We study via Monte Carlo simulations the influence of quenched and mobile impurities in the contact process (CP) on two-dimensional lattice and continuum systems. In the lattice system, the effect of mobile impurity was studied for the density n_{i}=0.2 and two selected values of hopping probability for impurity particles, w=0.5 and 1. In the continuum system, the CP was defined by distributing spherical impurity particles of diameter σ_{i} and number density n_{i}=0.2 and active particles of diameter unity and number density 1-n_{i} on a square substrate with periodic boundaries. In each dynamic process, a particle is selected at random; the active particle either creates with a rate λ an offspring at a distance r (1≤r≤1.5) from the active particle or annihilates with a unit rate, and the impurity particle hops a distance r (0≤r≤1), both along randomly selected directions. We found that the lattice CP shows power-law behaviors with varying critical exponents depending on the values of w. For the continuum CP with quenched impurity, the critical behavior followed the activated scaling scenario, whereas with mobile impurity usual power-law behaviors were observed but the critical exponents varied depending on the values of σ_{i}.
Collapse
Affiliation(s)
- Sang Bub Lee
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| | - Jin Min Kim
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
3
|
Wiese KJ. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086502. [PMID: 35943081 DOI: 10.1088/1361-6633/ac4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/23/2021] [Indexed: 06/15/2023]
Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and many other systems can be modeled as an elastic system subject to quenched disorder. The ensuing field theory possesses a well-controlled perturbative expansion around its upper critical dimension. Contrary to standard field theory, the renormalization group (RG) flow involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG. Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic manifold. In this review, we give a pedagogical introduction into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics). Building on these techniques, avalanche observables are accessible: distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems requires specific techniques, which we develop, including modeling of discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed percolation, and non-linear surface growth with additional Kardar-Parisi-Zhang (KPZ) terms. On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the directed polymer for its steady state, or a single particle for its decay. Other topics covered are the relation between functional RG and replica symmetry breaking, and random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
Collapse
Affiliation(s)
- Kay Jörg Wiese
- Laboratoire de physique, Département de physique de l'ENS, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
| |
Collapse
|
4
|
Kim JM, Lee SB. Alternative method for measuring characteristic lengths in absorbing phase transitions. Phys Rev E 2022; 105:025307. [PMID: 35291143 DOI: 10.1103/physreve.105.025307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
We applied an alternative method for measuring characteristic lengths reported recently by one of us [J. M. Kim, J. Stat. Mech. (2021) 03321310.1088/1742-5468/abe599] to the models in the Manna universality class, i.e., the stochastic Manna sandpile and conserved lattice gas models in various dimensions. The universality of the Manna model has been under long debate particularly in one dimension since the work of M. Basu et al. [Phys. Rev. Lett. 109, 015702 (2012)10.1103/PhysRevLett.109.015702], who claimed that the Manna model belongs to the directed percolation (DP) universality class and that the independent Manna universality class does not exist. We carried out Monte Carlo simulations for the stochastic Manna sandpile model in one, two, and three dimensions and the conserved lattice gas model in three dimensions, using both the natural initial states (NISs) and uniform initial states (UISs). In two and three dimensions, the results for R(t), defined by R(t)=L[〈ρ_{a}^{2}〉/〈ρ_{a}〉^{2}-1]^{1/d}, L and ρ_{a} being, respectively, the system size and activity density, yielded consistent results for the two initial states. R(t) is proportional to the correlation length following R(t)∼t^{1/z} at the critical point. In one dimension, the data of R(t) for the Manna model using NISs yielded anomalous behavior, suggesting that NISs require much longer prerun time steps to homogenize the distribution of particles and larger systems to eliminate the finite-size effect than those employed in the literature. On the other hand, data from UISs yielded a power-law behavior, and the estimated critical exponents differed from the values in the DP class.
Collapse
Affiliation(s)
- Jin Min Kim
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| | - Sang Bub Lee
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
5
|
Schrauth M, Portela JSE. Universality of continuous phase transitions on random Voronoi graphs. Phys Rev E 2020; 100:062118. [PMID: 31962429 DOI: 10.1103/physreve.100.062118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 11/07/2022]
Abstract
The Voronoi construction is ubiquitous across the natural sciences and engineering. In statistical mechanics, however, only its dual, the Delaunay triangulation, has been considered in the investigation of critical phenomena. In this paper we set to fill this gap by studying three prominent systems of classical statistical mechanics, the equilibrium spin-1/2 Ising model, the nonequilibrium contact process, and the conserved stochastic sandpile model on two-dimensional random Voronoi graphs. Particular motivation comes from the fact that these graphs have vertices of constant coordination number, making it possible to isolate topological effects of quenched disorder from node-intrinsic coordination number disorder. Using large-scale numerical simulations and finite-size scaling techniques, we are able to demonstrate that all three systems belong to their respective clean universality classes. Therefore, quenched disorder introduced by the randomness of the lattice is irrelevant and does not influence the character of the phase transitions. We report the critical points to considerable precision and, for the Ising model, also the first correction-to-scaling exponent.
Collapse
Affiliation(s)
- Manuel Schrauth
- Institute of Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Jefferson S E Portela
- Institute of Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Chatterjee S, Das A, Pradhan P. Hydrodynamics, density fluctuations, and universality in conserved stochastic sandpiles. Phys Rev E 2018; 97:062142. [PMID: 30011450 DOI: 10.1103/physreve.97.062142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 06/08/2023]
Abstract
We study conserved stochastic sandpiles (CSSs), which exhibit an active-absorbing phase transition upon tuning density ρ. We demonstrate that a broad class of CSSs possesses a remarkable hydrodynamic structure: There is an Einstein relation σ^{2}(ρ)=χ(ρ)/D(ρ), which connects bulk-diffusion coefficient D(ρ), conductivity χ(ρ), and mass fluctuation, or scaled variance of subsystem mass, σ^{2}(ρ). Consequently, density large-deviations are governed by an equilibrium-like chemical potential μ(ρ)∼lna(ρ), where a(ρ) is the activity in the system. By using the above hydrodynamics, we derive two scaling relations: As Δ=(ρ-ρ_{c})→0^{+}, ρ_{c} being the critical density, (i) the mass fluctuation σ^{2}(ρ)∼Δ^{1-δ} with δ=0 and (ii) the dynamical exponent z=2+(β-1)/ν_{⊥}, expressed in terms of two static exponents β and ν_{⊥} for activity a(ρ)∼Δ^{β} and correlation length ξ∼Δ^{-ν_{⊥}}, respectively. Our results imply that conserved Manna sandpile, a well studied variant of the CSS, belongs to a distinct universality-not that of directed percolation (DP), which, without any conservation law as such, does not obey scaling relation (ii).
Collapse
Affiliation(s)
- Sayani Chatterjee
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake, Kolkata 700106, India
| | - Arghya Das
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
7
|
Kwon S, Kim JM. Hyperuniformity of initial conditions and critical decay of a diffusive epidemic process belonging to the Manna class. Phys Rev E 2017; 96:012146. [PMID: 29347137 DOI: 10.1103/physreve.96.012146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 06/07/2023]
Abstract
For a fixed-energy Manna sandpile model belonging to a Manna class in one dimension (d=1), we recently showed that the critical decay is different for random and regular initial conditions (ICs). Compared with previous results of natural IC for several models, we suggested for the Manna class that the critical decay depends on the characteristics of the three ICs. But the dependence on the random and regular ICs was shown only for a single model. In this work, we study the critical decay for the random and regular ICs for another model of the Manna class in d=1, a diffusive epidemic process. It is shown that the critical decay exponent agrees with the previous result for each IC, which verifies that IC dependence is a common feature of the Manna class. In addition, for the random and regular ICs, we measure the variance σ^{2}(r) of total particle density in a region of size r by increasing r up to system size and investigate its temporal evolution toward the value σ_{q}^{2}(r) of the quasisteady state at criticality. In d=1,σ^{2}(r) scales as σ^{2}(r)∼r^{-ψ} with ψ=1 for random distributions and 1<ψ≤2 for hyperuniform ones. The temporal evolution shows that σ^{2}(r) of the two ICs differently relax toward σ_{q}^{2}(r) and the regular IC becomes a hyperuniform distribution of ψ=2 in the beginning of the evolution. We estimate ψ=1.45(3) for both the quasisteady state and absorbing states, so the quasisteady state is also as hyperuniform as absorbing states. The hyperuniformity of the quasisteady state shows that the natural IC also should be hyperuniform as much as the quasisteady state, because the natural IC is obtained from particle configurations close to the quasisteady state. Consequently, the different ψ of the three ICs suggest that σ^{2}(r) can classify the characteristics of the three ICs in a unified way and the different degree of hyperuniformity of the ICs provides another explanation for the observed IC-dependent critical decay in a point of view of initial fluctuations and correlations.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
8
|
Kartha MJ, Banpurkar AG. Why patchy diffusion-limited aggregation belongs to the directed-percolation universality class. Phys Rev E 2016; 94:062108. [PMID: 28085313 DOI: 10.1103/physreve.94.062108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 11/07/2022]
Abstract
We present a possible link between nonequilibrium phase transition observed in patchy diffusion-limited aggregation (DLA) [M. J. Kartha and A. Sayeed, Phys. Lett. A 380, 2791 (2016)10.1016/j.physleta.2016.06.036] and directed bond percolation (DP). A system of directed percolation with patchy particles (patchy DP) in which the bond connectivity is established depending on patch size p is analyzed. It is observed that patchy DP starting from a single seed shows a nonequilibrium phase transition. Below a critical value of the patch size p_{c}, the system reaches an absorbing state above which is a fluctuating active state as observed in the DP system. The value of this nonuniversal parameter p_{c} is observed to be slightly higher than the value observed in patchy DLA. Close to the critical value, the order parameter P(∞)∼(p-p_{c})^{β} where β=0.272±0.010, which is consistent with the directed-percolation universality class. Therefore the intrinsic nature of patchy DP is responsible for the phase transition in patchy DLA. This study reveals that the estimated critical value of patch size p_{c}=0.80625±0.00020 in patchy DP is different from the critical bond probability p_{c}=0.6447 in the DP system. This elucidates that the bond probability in DP is not equivalent to the patch probability of a particular site. Our work also gives an insight into the problem related with formation of an extended network of pentagon subunits in connection with the virus capsid.
Collapse
Affiliation(s)
- Moses J Kartha
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
| | - Arun G Banpurkar
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
| |
Collapse
|
9
|
Grassberger P, Dhar D, Mohanty PK. Oslo model, hyperuniformity, and the quenched Edwards-Wilkinson model. Phys Rev E 2016; 94:042314. [PMID: 27841652 DOI: 10.1103/physreve.94.042314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 06/06/2023]
Abstract
We present simulations of the one-dimensional Oslo rice pile model in which the critical height at each site is randomly reset after each toppling. We use the fact that the stationary state of this sand-pile model is hyperuniform to reach system of sizes >10^{7}. Most previous simulations were seriously flawed by important finite-size corrections. We find that all critical exponents have values consistent with simple rationals: ν=4/3 for the correlation length exponent, D=9/4 for the fractal dimension of avalanche clusters, and z=10/7 for the dynamical exponent. In addition, we relate the hyperuniformity exponent to the correlation length exponent ν. Finally, we discuss the relationship with the quenched Edwards-Wilkinson model, where we find in particular that the local roughness exponent is α_{loc}=1.
Collapse
Affiliation(s)
| | - Deepak Dhar
- Tata Institute for Fundamental Research, Mumbai, India
| | - P K Mohanty
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
10
|
Kwon S, Kim JM. Critical behavior for random initial conditions in the one-dimensional fixed-energy Manna sandpile model. Phys Rev E 2016; 94:012113. [PMID: 27575083 DOI: 10.1103/physreve.94.012113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/07/2022]
Abstract
A fixed-energy Manna sandpile model undergoes an absorbing phase transition at a critical ρ_{c}, where an order parameter ϕ(t) decays as t^{-α} in time t. As the prototype of the Manna class, the model has been extensively studied in one dimension. However, the previous estimates of ρ_{c} and some critical exponents are different, depending on the types of initial conditions; random, natural, and regular conditions. The estimates of ρ_{c} for the random and the regular conditions are the lower and the upper bound among currently known estimates, respectively. In this work, for the random conditions, ρ_{c} and α are measured by taking into account finite-size (FS) effects. At the previous estimate of ρ_{c}, simulation results show that the temporal decay of ϕ(t) is strongly affected by the FS effects up to much larger system size (∼10^{6}). For the sizes for which ϕ(t) is independent up to t=2×10^{7}, we estimate ρ_{c}=0.8925(1) and α=0.110(5), which clearly differ from the previous results for the random conditions, ρ_{c}=0.89199(5) and α=0.141(24). Instead, the present ρ_{c} agrees with ρ_{c}=0.89255(2) of the regular conditions. In addition, the present α is substantially distinguishable from the results of the other types of initial conditions, α=0.159(3) and 0.146(2) for the natural and the regular conditions, respectively, which supports the claim of the initial condition dependence of dynamical exponents in the Manna class.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
11
|
Kwon S, Kim JM. Absence of absorbing phase transitions in a conserved lattice-gas model in one dimension. Phys Rev E 2016; 93:012106. [PMID: 26871023 DOI: 10.1103/physreve.93.012106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/07/2022]
Abstract
A one-dimensional conserved lattice-gas model is known to undergo continuous absorbing phase transitions where some of the critical exponents are exactly known. In one dimension, we recently showed that the model is mapped onto a two species reaction A+B→0 with diffusion rate of D_{A}>0 and D_{B}=0. In this work, it is explicitly shown from the scaling theory for A+B→0 that the observed scaling behavior of the conserved lattice-gas model is not associated with the absorbing phase transitions. Instead, the model indeed undergoes a crossover between two different scaling behaviors of A+B→0, the scaling behaviors of equal and unequal initial densities of two species. The crossover is similar to the absorbing transitions in many respects but some important features of continuous transitions such as the diverging fluctuations of an order parameter are absent.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
12
|
Lee SB. Absorbing phase transition in a conserved lattice gas model with next-nearest-neighbor hopping in one dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062102. [PMID: 26764627 DOI: 10.1103/physreve.92.062102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 06/05/2023]
Abstract
The absorbing phase transition of the modified conserved lattice gas (m-CLG) model was investigated in one dimension. The m-CLG model was modified from the conserved lattice gas (CLG) model in such a way that each active particle hops to one of the nearest-neighbor and next-nearest-neighbor empty sites. The order parameter exponent, the dynamic exponent, and the correlation length exponent were estimated from the power-law behavior and finite-size scaling of the active particle densities. The exponents were found to differ considerably from those of the ordinary CLG model and were also distinct from those of the Manna model, suggesting that next-nearest-neighbor hopping is a relevant factor that alters the critical behavior in the one-dimensional CLG model.
Collapse
Affiliation(s)
- Sang Bub Lee
- Department of Physics and Department of Nano-Science & Technology of Graduate School, Kyungpook National University, Daegu 41556, Korea
| |
Collapse
|
13
|
Kwon S, Kim JM. Critical behavior of a fixed-energy Manna sandpile model for regular initial conditions in one dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062149. [PMID: 26764674 DOI: 10.1103/physreve.92.062149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Indexed: 06/05/2023]
Abstract
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the critical behavior for regular initial conditions in which activities are distributed at regular intervals on average. The FE Manna model conserves the density ρ of total particles and undergoes an absorbing phase transition at a critical ρ(c). For the regular initial conditions, we show via extensive simulations that the dynamical scaling behaviors differ from those of the random and the natural initial conditions. Off-critical scaling exponents β and ν(⊥) are also measured and shown to agree well with the values of the directed percolation (DP) class as reported by Basu et al. [Phys. Rev. Lett. 109, 015702 (2012)]. Our results suggest that the dynamical scaling behaviors depend on the characteristics of initial conditions, but the off-critical scaling behaviors in the steady state are independent of initial conditions and belong to the DP class.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
14
|
Dickman R, da Cunha SD. Particle-density fluctuations and universality in the conserved stochastic sandpile. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:020104. [PMID: 26382328 DOI: 10.1103/physreve.92.020104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 06/05/2023]
Abstract
We examine fluctuations in particle density in the restricted-height, conserved stochastic sandpile (CSS). In this and related models, the global particle density is a temperaturelike control parameter. Thus local fluctuations in this density correspond to disorder; if this disorder is a relevant perturbation of directed percolation (DP), then the CSS should exhibit non-DP critical behavior. We analyze the scaling of the variance Vℓ of the number of particles in regions of ℓd sites in extensive simulations of the quasistationary state in one and two dimensions. Our results, combined with a Harris-like argument for the relevance of particle-density fluctuations, strongly suggest that conserved stochastic sandpiles belong to a universality class distinct from that of DP.
Collapse
Affiliation(s)
- Ronald Dickman
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970 Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology of Complex Systems, Caixa Postal 702, 30161-970 Belo Horizonte, Minas Gerais, Brazil
| | - S D da Cunha
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59078-970 Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
15
|
Bhaumik H, Ahmed JA, Santra SB. Crossover from rotational to stochastic sandpile universality in the random rotational sandpile model. Phys Rev E 2015; 90:062136. [PMID: 25615073 DOI: 10.1103/physreve.90.062136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 11/07/2022]
Abstract
In the rotational sandpile model, either the clockwise or the anticlockwise toppling rule is assigned to all the lattice sites. It has all the features of a stochastic sandpile model but belongs to a different universality class than the Manna class. A crossover from rotational to Manna universality class is studied by constructing a random rotational sandpile model and assigning randomly clockwise and anticlockwise rotational toppling rules to the lattice sites. The steady state and the respective critical behavior of the present model are found to have a strong and continuous dependence on the fraction of the lattice sites having the anticlockwise (or clockwise) rotational toppling rule. As the anticlockwise and clockwise toppling rules exist in equal proportions, it is found that the model reproduces critical behavior of the Manna model. It is then further evidence of the existence of the Manna class, in contradiction with some recent observations of the nonexistence of the Manna class.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Jahir Abbas Ahmed
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - S B Santra
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
16
|
Kwon S, Kim JM. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012149. [PMID: 25679612 DOI: 10.1103/physreve.91.012149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 06/04/2023]
Abstract
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρ(c) as ρ varies. In this work, we show that, for a given ρ, random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρ(c) alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρ(c), the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|